Defensive deception is a promising approach for cyberdefense. Although
defensive deception is increasingly popular in the research community, there
has not been a systematic investigation of its key components, the underlying
principles, and its tradeoffs in various problem settings. This survey paper
focuses on defensive deception research centered on game theory and machine
learning, since these are prominent families of artificial intelligence
approaches that are widely employed in defensive deception. This paper brings
forth insights, lessons, and limitations from prior work. It closes with an
outline of some research directions to tackle major gaps in current defensive
deception research.
them to inducing making, act leveraging defensive core the of of ideas research cybersecurity realized been in the non-trivial have been efforts develop deception techniques.
promising controls access as inside and outside or controls subverting of line distinct defense deception idea of key decision their to mislead Since the benefits have deception there community, defensive
the with misleading them Second, machine been that mimic
2番目に誤解を招く機械は
0.52
to objects techniques have information or
物体へ 技術には情報がある
0.64
lure paper was motivated on
ルアー 紙は動機づけられた
0.58
focusing attackers. to obtain more how game-theoretic
焦点 攻撃者だ ゲーム理論を)もっと理解する
0.65
observed defender
オブザーバーディフェンダー
0.35
game-theoretic strategies deception attackers or strategies.
ゲーム理論戦略 攻撃者や戦略を欺く。
0.69
are and Two main techniques tion attacker of an based on defensive for fusion mal or poor defensive decoy objects information Therefore, understanding defensive ML-based existing stood the in contributions of our we papers, discuss deception techniques the them in and paper
order compared paper to survey the existing and the clarify section.
紙の順序を比較して 既存の部分と明確な部分を調べる。
0.62
following have been distinguish existing the on papers differences between
以下 既存の論文の相違点を区別し
0.68
in-depth or underthe key survey defensive our
深く、または重要な調査の下、我々を防御する
0.49
B. Comparison with Existing Surveys
B。 比較 現存 調査
0.57
et at as as
など に として として
0.59
the the de-
はあ? はあ? de-
0.49
well goal, layer, Several
まあ ゴール 層 数
0.52
including defensive techniques monitoring
含む 防御 技法 監視
0.73
survey 107, on 118].
調査107 第118話。
0.53
deception unit, and surveyed theoretical models
偽装ユニット 理論モデルを調べ
0.51
a conducted have [9, as 69, follows defensive surveyed
実施されたhad[9, as 69]は、防御調査に続く
0.72
application, or data deception, however, Spafford [9] in considered
しかし、考慮されたスパフォード[9]は、適用、またはデータ偽造
0.67
paper discussed of affecting for a defender this survey integrating In addition,
調査統合におけるディフェンダーへの影響に関する論文
0.47
studies techniques ception techniques al.
インセプション テクニックを勉強するアル。
0.53
et [69] Han decriteria, based four on used deception.
et [69]han decriteria, based on used deception.
0.63
They ployment of for generation, defensive deception placement, deployment, and monitoring of deception elements.
彼らは偽装要素の生成、防御的な偽装の配置、展開、監視を企図した。
0.55
Han deceptive al.
Han deceptive al
0.55
various techniques the deployed Their network, discussion comprehensive.
様々な技術 ネットワークを展開 議論を包括的に
0.75
of how defensive a defense security following the technique: deception and and the models attacker’s an achieve to a paper is limited decepdefensive didn’t this work should be techniques.
survey on defensive cybersecurity different types defense, target engagement.
防衛サイバーセキュリティに関する調査 様々な種類の防衛 ターゲット・エンゲージメント
0.66
Their attacker and 2008–2018, over classification their own techniques.
彼らの攻撃と2008-2018は、彼ら自身のテクニックを分類した。
0.51
work obfuscation as discussed paper developing for Nash, analysis conducted analysis without where ML-based these two insights
nashのための論文で論じられた作業の難読化,mlベースで解析を行なわずに分析した2つの考察
0.60
discussed the tradeoffs between in whether to relation they are system, layers.
システムとレイヤの関係性に関するトレードオフについて議論した。
0.54
game-theoretic not is Almeshekah and presented been has deception cyber the specific, be To domain.
ゲーム理論上の not は almeshekah であり、提示されたものは、deception cyber the specific、be to domain である。
0.55
the authors discussed considering three phrases in a defensive planning, and integrating, implementing this evaluating.
著者らは、防衛計画において3つのフレーズを検討し、これを統合し、実装した。
0.52
particular, In in deceptions of planning terms can perception misled which be security system’s goals.
特に、計画用語の誤解において、セキュリティシステムの目標と誤解されることがある。
0.63
However, and to modeling contribution its of set limited tion a to attackers.
しかし、コントリビューションをモデル化するためには、攻撃者に限定的なtion aをセットする。
0.56
variety consider of a network implementing considered in et Pawlick al.
variety consider of a network implementing in et Pawlick al.
0.76
deception defensive deception techniques and of and honey-X, obfuscation, mixing, published 24 paper papers to taxonomies defined develop game-theoretic defensive of deception is interesting subcategories under the deception defensive game signaling and existing the of game-theoretic are in this paper to considering realistic network deception defensive techniques game (i.e., theory and ML) may promising research and directions.
偽装防御技術とハニーxの難読化、混合、24の論文 to taxonomies to develop game-theoretic defense of deceptionという論文は、偽装防御ゲームシグナリングと既存のゲーム理論の下、興味深いサブカテゴリであり、現実的なネットワーク・デセプション防御技術ゲーム(すなわち理論とml)を考えるための論文である。
0.74
Lu Recently, et al. [90] defensive of processes the
lu、最近、等々。 プロセスの[90]防御.
0.60
and deception. This used approaches techniques, such as Stackelberg, the theories.
偽りも これは、理論であるstackelbergのようなアプローチ技術を用いた。
0.45
However, survey and defensive techniques game-theoretical environments or combination provide more
しかし,ゲーム理論的な環境や組み合わせはより多くを提供する。
0.63
environments which defensive deception an conducted extensive game-theoretic and been used the main
防御的デセプションが実行された広範なゲーム理論とメインとして使用される環境
0.57
[107] taxonomies that have authors discussed
著者が議論した[107]分類
0.66
for six perturbation, moving defensive game-theoretic
6つの摂動 動き 防御ゲーム理論
0.59
privacy. The deception
プライバシー。 偽り
0.45
brief survey of consisting a deception
構成する簡単な調査 deception (複数形 deceptions)
0.47
surveyed related treat moving target
関連調査 移動目標を扱い
0.74
of useful based three categories:
役に立つ ベース3 カテゴリー:
0.67
conducted common defense limited
実施 共通 防衛 limited~
0.69
This on to
これ オン へ
0.67
英語(論文から抽出)
日本語訳
スコア
TABLE I COMPARISON OF Key
テーブル 私 比較 鍵
0.55
Criteria OUR SURVEY PAPER WITH THE EXISTING SURVEYS OF DEFENSIVE DECEPTION Our
基準 我々の ディフェンス・デセプションの現況調査報告
0.47
Han [90] [69]
藩 [90] [69]
0.69
Lu Survey (2020)
ル 調査(2020年)
0.76
et al. (2020)
など。 (2020)
0.62
Pawlick [107]
Pawlick [107]
0.85
al. et (2019)
アル et (2019)
0.59
et al. (2018)
など。 (2018)
0.62
Rowe Rrushi
Rowe (複数形 Rowes)
0.35
and [118] concepts Provides Provides key taxonomies Includes ML approaches game-theoretic Includes Describes attack types Describes metrics Describes Is Discusses Discusses Discusses
included. information deception, and discussed dissimulation to
含まれてる 情報 欺き 悲観を議論し
0.59
planning of deception, authors The
偽りの計画、著者たち
0.56
phases: ment of ception.
フェーズ: 受容の段階です
0.52
on information simulation to discussed game-theoretic discussing cused on research.
研究に焦点をあてたゲーム理論的議論を議論するための情報シミュレーションについて
0.52
However, was defensive deception Rowe and Rrushi in niques of terms excuses, and social false on background the deception detectability of the calculation deception.
virtual), or goal ultimate activeness and in-depth an provides and insights on goal.
仮想) 目標 究極のアクティブネス 目標に関する提供と洞察を深く掘り下げること。
0.67
security physical the following classification
警備 物理的 以下の分類
0.66
key contributions: scheme characthat technique in of its terms deception an presence of object categories, effects applying after expected attack or protection for (i.e., asset or passive (i.e., or both).
deception defensive ML-based types of metrics We what game-theoretic used testbeds in less or based deception techniques their tiveness We limitations niques limitations tions research.
deception defense ml-based types of metrics we what game-theoretic used testbeds in less or based deception techniques their tiveness we limited niques limit tions research (英語)
0.83
the efficiency. discussed from this work.
はあ? 効率性。 この作品から議論された。
0.52
Based we and techand direcfor game-theoretic and ML-based defensive deception
ベースは私たちです そして、ゲーム理論とMLベースの防御的騙しのテクノロジーと希薄化
0.42
learned and deception defensive insights on these promising future
これらの有望な未来に対する学習と欺きの防御的洞察
0.59
are different challenges of disdomains and game-theoretic or
ドメイン分割とゲーム理論の異なる課題です
0.53
existing techare more or deception
既存の技術は多かれ少なかれ
0.61
more defensive and experiment or MLeffec-
より防御的で 実験かMLeffec
0.65
observed in learned, by deception
学習で観察され 騙して
0.52
deception the attacks defensive
だまされた 防御攻撃
0.53
lessons the extensively techniques
レッスン? 広範囲 技法
0.55
suggested examined literature surveyed
示唆 精査 文学 surveyed~
0.67
surveyed insights
surveyed~ 洞察
0.72
prove and the
証明しろ そして はあ?
0.51
the are by
はあ? は ところで
0.53
in to Note veying techniques learned deception approaches
イン へ 偽装アプローチを学習した注意ベイイング技術
0.59
of that this scope (GT) game-theoretic discussing extensive are
この範囲(GT)のゲーム理論に関する議論は
0.64
and from techniques or ML are paper or ML-based insights, survey.
技術やMLは 紙またはMLベースの洞察、調査。
0.54
using not that in excluded this
除外して使うのではなく
0.61
on surfocused deception defensive or limitations, lessons some Hence, defensive game-theoretic either survey paper.
deception pros and key the develop defensive extensively section
deception pros and key the development defensive extensive section
0.82
leveraging ML in techniques.
MLをテクニックで活用する。
0.62
In deception existing MLthe surveys addresses and their
既存のMLを欺いて調査する
0.51
Paper is paper structured the concept of deception and taxonomies deception.
紙は、偽りと分類の偽りという概念を構成した紙である。
0.56
the key technique.
鍵となるテクニックだ
0.73
Structure of the of The this rest provides Section II related to defensive Section III discusses deception defensive the clarifies key compared to techniques, deception goal.
defense a that achieve same in components Section gameusing key the explains IV existing gamethe theoretic defensive deception and surveys techniques theoretic along the discussions cons.
コンポーネントセクションでこれを達成する防御 a gameusing key the explains iv existing gamethethethethetheo retic defense deception and surveys technique theoretic along the discussion cons. (英語)
0.78
Section V components techniques addition, defensive based cons.
セクション5 コンポーネントテクニックの追加、防御ベースのcons。
0.60
pros and VI Section describes isting game-theoretic techniques.
pros と VI セクションでは、ゲーム理論の技法を記述している。
0.49
presents metrics VIII Section of efficiency the game using theory veys evaluation defensive Section defensive different cyberphysical Internet of Things and wireless Section the answering addition, In this defensive the and suggests
deception addition, In this validating for surveyed in how theoretic game techniques been have domains, as such enterprise (CPS), web-based cloud software-defined networks
deception VII discusses deception application systems (IoT), networks.
deception vii では deception application systems (iot) ネットワークについて論じている。
0.57
IX summarizes learned by and lessons Section I-D. raised in found from limitations in surveyed this work directions.
IX の要約 learn by and lessons セクション i-d. では、この作業の方向性を調査した。
0.68
and techniques sursection those existing this work.
既存の作品の技法を 分析するのです
0.51
or developed insights questions discusses the techniques future
発展させたり 洞察の質問は 未来の技術について
0.51
ML-based for networks, networks, (SDNs),
MLベースのネットワーク、ネットワーク、(SDN)
0.67
existing and ML. used techniques
ML と ML。 使用技術
0.66
key section deception promising
有望なキーセクションのデセプション
0.60
by countered exthe deception defensive
偽りの防御に逆らうことで
0.62
types ML-based
type ML ベース
0.76
the research attack and
この研究は 攻撃して
0.64
effectiveness to measure
有効性 to measure
0.76
techniques defensive research testbeds
技法 防御 研究 試験ベッド
0.69
II. TAXONOMIES OF DEFENSIVE DECEPTION
II。 タキソノミ 防御的デセプションの
0.45
Deception has been heavily used by attackers which perform of applications both a variety section, we computer our perspective.
認識は、様々な部分の両方でアプリケーションを実行する攻撃者によって多用されている。
0.57
defender’s discussions
defender (複数形 defenders)
0.51
attacks of at social and deception of
社会や欺くことへの攻撃
0.66
levels In this a of terms different systems.
このa項のレベルは 異なるシステムです
0.71
in limit in
in limit イン
0.71
3 explain the addition, we In of process the in developing their and clarify distinctive
3 追加を説明します、我々は、その発展と明確化の過程において、
0.76
related defensive characteristics. common
関連する防御特性 共通
0.69
taxonomies
taxonōmāte
0.61
used techniques deception
使用技術 deception
0.79
to A. with refers of conflict
へ A。 と 参照 紛争の
0.65
attacker concept of Defensive Deception
攻撃的概念 防御的デセプションの
0.75
of mislead intents, [123].
誤解を招く意図の [123].
0.62
interactions situations one’s mission spectrum under
相互作用の状況 mission spectrum (複数形 mission spectrums)
0.66
concept to intentionally weaknesses,
意図的な弱さの概念です
0.63
deception military conventional about enemy an taken [123].
敵が奪った[123]という 通常の偽装軍事
0.72
tactics and and the employs deception to manipulate enemy’s deception Defensive between an The [123].
戦術及びその使用は、敵の[123]の間の偽証を操るために偽証を使用する。
0.60
Concepts to The one’s actions The strengths actions defender applies advance to and to a wide a of defender defensive deception initiated in military environments has been the name domains cyber cyberdecepintroduced Spafford [10] refined and Almeshekah tion.
その人の行動に対する概念 強固な行動の防御は、軍事環境から始まった防御的デセプションの広い範囲に前もって適用され、サイバーサイバーデプテント・スパフォード(cyber cyberdecepintroduced spafford [10] refined and almeshekah tion という名称で呼ばれている。
0.72
concept of “planned as [147] by Yuill taken cyberdeception to and attackers to confuse and/or mislead them to that specific actions computer-security take take) (or not the concept of deception defenses.” Although is highly multiagreed behind idea common the disciplinary deception is a way and belief form a to entity an to mislead as false control behavior deception [118].
its based on it Therefore, when successfully executed, is a deceivee suboptimally, provides achieving deceiver benefits which in for a deceiver’s ‘maRrushi goal.
Rowe the and deception of concept as the nipulation’ core a deceivee encourages something wants or to do discourages deceiver doing from deceivee the not want.
deception or of Defensive Deception Taxonomies cerwith First all, of even can be we intent), non-malicious (either intent tain defensive of the in deception concept consider the context intent’ ‘with deception of discussions limit deception, we atagainst although the intent to defend a given system the of terms taxonomies discuss section, we tackers.
欺くか、または 防御的デセプション(defenderal deception taxonomies, cer with first all, or even can be we intent, or even can be we intent)において、非軍事的(in deception concept(in deception concept, in deception, in deception)の意図は文脈的意図(context intent)を考える。
0.52
in this In are (ii) used; techniques following aspects: (i) what conceptual (i.e., A true or not whether created is object fake object successfully to deceive); (iii) what of an deceiving the goal opponent; system; such as detecting an attacker or protecting a deception, for (mainly and attack detection) protection) to deceive an
i) 概念的(i) 創造物が偽物であるかどうかの判定に成功するかどうか、(iii) 目標を欺くかどうか、(iii) 攻撃者を検出したり、(主に、攻撃検出) 保護のために、偽物を保護するなどのシステム 訳抜け防止モード: in this In is (ii ) used ; techniques following aspects : (i ) what concept (i.e.) 生成したオブジェクトが偽物であるかどうかが偽物であるかどうか ) (iii) 相手を欺くもの,システム 攻撃者を検出したり、詐欺を防いだりすること for(主に攻撃検出)保護 deceive (複数形 deceives)
0.80
hidden to effects (iv)
効果に隠された(iv)
0.83
deceive or are what expected when ultimate is
だます、または何か ultimate (複数形 ultimates)
0.45
deception for
deception for...
0.37
a exists but given deception uses
存在するが 詐欺の使用は
0.61
is attack (v) whether true object
攻撃だ (v) true object
0.70
active given
アクティブ ですから
0.61
an is a a a
アン は あ あ あ
0.55
we passive (mainly
私たち 受動的 (主に)
0.58
or opponent. Conceptual Deception Categories: 1) 26, 57], 28, following techniques: [10, Masking • or in data the Repackaging something else vulnerability a
4 Activeness Passive Passive Passive Passive Active Active Active Passive Active or
4 活動性 受動受動受動能動能動能動能動・受動能動能動能動能動
0.61
Active Passive Passive Passive
活動 受動的 パッシブ・パッシブ
0.49
• • • • • in
• • • • • イン
0.80
to as as can
へ として として できる
0.60
trap such [148],
トラップ そんな [148],
0.63
creating lure a an attacker’s
創造 ルアー attack (複数形 attacks)
0.51
real a nodes
real a ノード
0.78
be which the real be
というと the real be―the real be
0.56
of aspects real imitating honeypots
現実的な側面を ハニーポットを模倣する
0.45
object presented allows
object presented allow
0.85
overshadowing object.
オーバーシャドーイングオブジェクト。
0.62
a new fake can it,
新しい偽物が できるのか?
0.64
hide something background or be to object can be hidden real, undetected the as confused be by
背景を隠したり、物に近づいたりすることは、現実に隠され、混乱しているように見つからない
0.61
files honey create can defender files.
ファイルhoney create can defender ファイル。
0.79
regular like look files that different way is a 26]: This [10, Dazzling with to hard that in blend is something as repackaged else.
通常のルックファイルのように、違うやり方で26個ある:これは[10]、ブレンドが再パッケージ化されているように、ハードにぶらぶらしている。 訳抜け防止モード: regular like look file that different way is a 26 ] : This [ 10] ブレンドに固執するのは、他のパッケージと同じようなものです。
0.81
A aiming it, to by example, an true For intruder error messages.
例えば、真のFor侵入者エラーメッセージを目指しています。
0.61
receiving many 26]: This refers to [10, Mimicking often look to used is This object.
多数の26]を受け取る:これは[10]を意味し、よく使われる模倣は、このオブジェクトである。
0.71
to interfaces or attackers.
インターフェースや攻撃者に対してです
0.59
can create 26]: A defender [10, Inventing a software instance, For attackers.
26]: 攻撃者のためのディフェンダー[10, ソフトウェアインスタンスの発明]。
0.57
to download in attackers for honeypot to data.
データにハニーポットの 攻撃者をダウンロードする
0.65
collecting personal attackers’ the attracts Decoying [10, 26]: A deceiver attention be should that away protected a critical assets from provide can system.
the For classical defensive conceal to honeypots user-monitoring their normal machines.
The For classical defense hidden to honeypots user- monitoring their normal machines.
0.93
like look more an This deceives [57]: by Camouflage background environment.
これは [57]: カモフラージュの背景環境によるものです。
0.50
For into a or real object can programs files be and valuable attacker it difficult for an to make information (or disinformation) information [57]: Fake False be can planted to mislead an attacker cyberspace.
Deception Information: or Objects Actual Presence 2) actual no or exists object true an applied when can be actual, use defender specific, more be object exists.
偽装情報: or objects actual presence 2) real no or exists object true a applied when be actual, use defender specific, more be object exists
0.73
a can true objects or information but may want to hide it by lying or a even example, For towards information providing if it.
a は真のオブジェクトや情報を提供することができるが、嘘や偶例によってそれを隠したいかもしれない。
0.74
false system as an operating system but may lie it the certain OS in deed.
オペレーティングシステムとしての偽のシステムは、あるosの行為を偽っている可能性がある。
0.61
On the uses Unix. But fake other a not can hand, confusion, creating uncertainty or the purpose of created for be suboptimal reach to opponent an lead which a can poor files.
honey or tokens as honey decision, such Deception: Expected Effects (or Intents) of Defensive 3) expected effects more or deception, defensive are one Via making deception, of goal the achieving of the process as strategies.
We its in choice suboptimal choose an attacker a categorize these effects in terms of the following five aspects: Hiding: to change Some to slow complexity [10, Luring demonstrated object real an honeypots are to information [52]: Most Misleading as last step misleading an Blending: This into blended relies on an to things of
Hiding: to change Some to slow complexity [10, Luring demonstrated object real an honeypots is to information [52]: Most Misleading as the last step misleading an Blending: This into blended based on an to things of a to things of this。 訳抜け防止モード: 我々はその選択を最適に選択する 攻撃者はこれらの効果を分類する 以下の5つの側面から見て かかわり 複雑度を遅くすること 10) ミツバチの実物は情報である 52 ] : ブレンディングを誤解させる最後のステップとして最も誤解される これをブレンドしたものは、ある対物に依存している
0.71
techniques have this effect deception ultimate goal of deception, the achieve to action.
テクニックは、この効果を欺く 究極的な目的 欺くこと 行動の達成
0.61
suboptimal to a choose attacker can object be well is made when a real effect effectiveness environments.
選択アタッカーにとっての最適化は、実効性のある環境ではうまく行くことができる。
0.67
or background Its and environment altering the appearance nonfiles password instance, hide.
背景 外観の非ファイルパスワードインスタンスを変更する環境と環境が隠される。
0.77
obfuscation the down 118].
ダウン118の難読化]
0.47
[9, This 26]: to an attacker lure to the attackers.
9, this 26]: 攻撃者に対して攻撃者に誘惑する。
0.75
when addressed is effect real object of display a defense techniques of escalation
アドレスがエフェクト・リアル・オブジェクトで エスカレーションの防御技術を表示するとき
0.63
deception into also or attackers
あるいは攻撃者への騙し
0.77
is shown when where interested or
興味がある場所または場所を示す
0.55
is something use hiding increase
増加を隠蔽するために
0.64
effect attacker is attackers is object like a examples false send
効果攻撃は攻撃者だ 例のfalse sendのようなオブジェクトです
0.75
used else. data attack
他に使った データ攻撃
0.75
the in. The honey typical to files
インだ ミツバチは ファイルに典型的
0.53
fake looks a object
偽装 a- + object
0.40
This the in give expected
これが 与えて 期待
0.67
For the or
のために はあ? あるいは
0.54
a • • • •
あ • • • •
0.78
英語(論文から抽出)
日本語訳
スコア
• is the [149].
• は はあ? [149].
0.65
several altering
数 altering~
0.65
document camouflage,
文書 カモフラージュ
0.53
cannot [9,
cannot [9,
0.71
for hidden file content
隠れて ファイル内容
0.70
it effect evidence, a discerning on the
証拠となる。 discerning (複数形 discernings)
0.50
automated searches ‘pass’ the to elude named with environment
自動検索は「パス」 環境にとらわれずにいられる
0.62
conflicting evidence, or lack (e g , observations or street red blue)
矛盾する証拠、または欠如(例えば、観察または通り赤い青)
0.79
run by hackers Additionally, blendbe achieved can For a example, through adding ones.
blendbeはハッカーによって実行され、例えば、それを追加することで達成される。
0.58
descriptive name files looking environment ing objects instead.
記述可能な名前ファイル 代わりに環境 ing オブジェクトを見る。
0.68
through the environment the in create noise defender can find to harder critical bogus to make files comes from perceived uncertainty Confusing [9]: This failing caused by of pinpoint whether a in can A car defender 76].
and deceits confuse an attacker by presenting both truths [9].
両方の真実を提示することで 犯人を混乱させます [9]
0.61
techniques technique, one more deception Some than use deception increase lies includes as such bait-based to that designed [32] al.
テクニック、もう1つの偽造 偽造の増加に代えて、[32] al を設計した餌ベースのものが含まれる。
0.55
[80]. Bowen or attack complexity cost et technique defense trap-based a increase to the likelihood of deception several combines attack which an detecting insider and information, like techniques false creating a watermark system embeds deception First, objects.
[80]. bowen or attack complexity cost et technique defense trap-based the increase to the potential of deception(英語版) いくつかの攻撃の組み合わせは、検出インサイダーと情報、例えば、ウォーターマークシステムの作成は、まず、オブジェクトにデセプションを埋め込む。
0.69
fake the format in the binary of to detect when decoy the Moreover, is the each of loaded.
This fake the format in the binary of to detect when deoy the further, is the each of loaded.
0.76
decoy as such information, “bait” document of includes types servers, online accounts online for and web-based “beacon” A is embedded in the decoy opening upon site remote web a the of Cyberspace: 4) techniques is The either protecting assets or detecting attackers or both.
decoy そのような情報として、タイプサーバ、オンラインアカウント、webベースの“ビーコン”aの“ベイト”ドキュメントが、サイトリモートwebのデコイ開口部に埋め込まれている サイバースペース: 4) テクニックは、資産を保護するか、攻撃者を検出するか、またはその両方である。 訳抜け防止モード: 型サーバを含む “ bait ” ドキュメントは,そのような情報としてデコイにする。 オンライン・アカウント・フォー・ウェブ - based “beacon ” A is embedded in the deoy open on site remote web a a the of Cyberspace : 4 ) Technique is the protect assets or detections or both.
0.87
Although techniques deception both some attack and protection is asset protect to likely system assets while more using or objects information catch false Activeness of Defensive Deception: 5) deception rized the hiding attackers.
particular deception the key aspects: decepin used the goal(s), and technique.
デセプチンはゴール(s)とテクニックを使いました。
0.29
banking email document document.
メールの文書を 銀行化してる
0.59
Ultimate ultimate how a on based or intents), of the
究極の究極 根拠または意図がどうあるか)
0.54
deception attacker decisions.
詐欺アタッカーの判断だ
0.40
the defense attackers. achieve hiding by deception by
守備隊の攻撃者だ 偽りによって隠れることを達成する
0.54
logins, login accounts.
ログイン ログインアカウント
0.66
signals that information ultimate used of Defensive defender a
信号は 究極の情報 defender (複数形 defenders)
0.62
defender to deception deception and
偽りの擁護者 騙しや
0.47
allow the detection, in deception
検出を許可しろ in deception
0.74
attackers. Caddell
攻撃者だ キャドデル
0.62
Goals goal of
ゴールゴールのゴール
0.75
Deception deception
偽り deception
0.65
passive active. using
受動的 アクティブ 利用
0.54
tends four [34]
tends 四 [34]
0.82
to is III. DESIGN
へ は III。 デザイン
0.70
PROPERTIES OF PRINCIPLES AND UNIQUE DEFENSIVE DECEPTION key
特性 - 原則 不正抑止キー及び不正抑止キー
0.43
discuss In this
話し合おう 院 これ
0.60
section, we the defensive deception techniques.
セクション、私たち 防御的デセプション技術です
0.69
of properties when caveats we discuss from other or defense
他人や防衛から議論する時 注意すべき事柄の
0.58
defensive using the how similar defense obfuscation
類似した防御の難読化を利用した防御
0.53
defensive defensive deception
防御防御 deception
0.75
techniques. four design In addition, we their techniques.
テクニック。 4つのデザインに加えて、私たちは彼らのテクニックです。
0.56
techniques as moving principles of address unique and key Further, differ target
動きのテクニックは 独特かつ鍵となる 対処の原則は ターゲットによって異なります
0.63
and deception deception such
騙されたり 騙されたり
0.30
merits techniques,
merits テクニックや
0.72
A. Design Principles
A。 デザイン 原則
0.75
of Defensive Deception
防御的デセプションの
0.71
5 to 2) In by
5 へ 2) 院 ところで
0.66
target design
ターゲット デザイン
0.76
analysis attackers principles of effectiveness,
分析 攻撃者 原則 有効性
0.65
When-to-Deceive:
When-to-Deceive
0.51
deception and what-attacker-to-dec eive
騙しや What- attacker-to-deceive
0.34
type what example, if highly determining
例をタイプすると 高い決定性
0.72
a when the attack (CKC)
a when the attack (ckc)
0.78
1) determine For this deception deceive deceive (i.e., deceive
1)決定する この騙しは欺く; 欺く; 欺く; 欺く
0.68
actually should confidential deploy confidential
秘密裏に展開すべきです
0.52
node with Hence, what a defensive in-depth
node: 防御的な奥行き
0.39
section, we terms in what (i.e., when (i.e., what particular attacker).
セクションは、何を意味するか(すなわち、いつ、どの特定の攻撃者か)です。
0.64
We an the discuss aspects: four the of to attacker type an of be deception used), can technique deception each discuss This What-Attacker-to-Dec eive: an of attacker the defender
私たち the of attack type an of be deception used) can technique deception each discuss these what-attacker-to-dec eptive: an of attack the defender 訳抜け防止モード: 私たち 議論の側面: 攻撃者タイプ an の 4 つは、be の偽装である。 can technique deception each discuss this what - attack - to - deceptive : an of attack the defender
0.79
defensive what-attacker-todece ive), when-tohow-to-deceiv e can to be used as principle follows: asks design principle wants to a defender to deceive attargets to deceive.
attackers, as outside attacks tackers performing reconnaissance information false providing by deceive aim to it may them Windows using (e g , configuration system about a saying OS).
In Unix uses operating system (OS) even if it from be protected valuable if addition, system asset a information to an exfiltrate to attackers aiming honeypot which a network, outside the defender may (e g , information mimics a real is a database).
the to decide there cost, incurs technique developing whether on investigation a be should prevented or detected by a defenshould be given attacker technique deception sive and cost, of terms in deployment.
its efficiency of refers to design This be used technique deception termining in the given a of stage of terms stages 103].
設計への言及の効率性 この用語は,所定の段階の段階において,所定の段階の段階における技術的偽造をいう。 訳抜け防止モード: 参照の効率は to design this be used technique deception termining in given a of stage of terms of term stage 103 ]
0.79
[43, The six kill chain reconnaissance, and exploitation, delivery, exfiltration [103].
[43]6件の殺傷鎖偵察及び搾取,送出,消毒[103]。
0.62
Outside lateral movement, and data in mainly the attacks delivery stages with the aim of penetrating into a On the exfiltrate parties.
outside the defender information, the attacker attacker, inside lure the attacker form attacks with are legacy also detection/prevention , or intrusion target as defense as moving the the same attackers, types deal with of based on analyses losses and gains in a using technique.
deception defensive How-to-Deceive: 3) defensive employing a defensive deception
欺きの防御方略:3 防御の欺きによる防御
0.69
dein cyber include control, attackers and system.
サイバーには 制御、攻撃、システムが含まれます
0.62
to aim to inside attackers unauthorized the information to by the attacks scanning more when stage, the in detected reconnaissance vulnerability patches fake with attacker lure the After system, the into the got honey files use can the defender to perthink which may exploiting of there the information.
However, false defense mechanisms, control, such to utility of
しかし, 偽防衛機構, 有効性などの制御
0.68
in of deception techniques have been discussed in Section II-B, as masking, mimicking, decoying, information, baits, specific so deception to what defensive deception.
第2-b節では、マスキング、模倣、デコイイング、情報、餌など、防御的デセプションに特有のデセプションとして、デセプション技術が議論されている。 訳抜け防止モード: in the deception technique is discussed in section ii - b, マスキング、模倣、デコイイング、情報、餌として、防御的デセプションに特有のデセプションとして。
0.64
The design decision on how-to-deceive what deception type technique conceptual such and for defensive use achieve to technologies
偽装方式の概念的概念をどう認識するか設計決定と防衛的利用が技術にもたらすもの
0.80
other hand, confidential example, For are attackers use can which can successfully
一方 秘密裏の例では 攻撃者が有効に使える
0.59
false to honeypots.
ハニーポットに偽りだ
0.47
becoming or tokens them to since
それ以来 それらになるか トークンとなるか
0.43
as technologies, mechanisms should of the
技術としてのメカニズムは
0.67
forth. However, what related example
どうぞ しかし 関連した例は
0.55
false technique use technology to deception
偽造技術 偽造技術 偽造技術
0.60
such emerging alternative there terms
このような新しい代替手段は
0.65
principle should attacker CKC command
原則 ckcコマンドを攻撃すべき
0.64
is more Some perform attacks
もう少しです 攻撃を行う
0.63
related use. reconnaissance
関連使用。 reconnaissance
0.76
be timing to The
be timing へ
0.63
perform outside, is to
実行する 外だ ですから
0.63
access target
アクセス ターゲット
0.74
stage of to
舞台 ですから へ
0.64
英語(論文から抽出)
日本語訳
スコア
include fake honeypots,
偽物を含む ハニーポット
0.50
honey topologies, files, fake
ハニー・トポロジー ファイル 偽物
0.41
honey or tokens, bait files
ハニー? トークン 餌のファイル
0.42
fake [69]. patches,
偽の[69] パッチ パッチ
0.56
keys, network B.
鍵だ ネットワーク B。
0.72
Benefits and Caveats of Defensive Deception
便益 そして 洞窟 防御的デセプションの
0.64
Techniques • • • is
技術 • • • は
0.80
as For from
として のために from ~
0.58
discuss Benefits existing
話し合おう 便益 現存
0.62
key as example, section, we
キーは 例えば セクション、私たち
0.66
Techniques: the as well of Defensive Deception
技術 同様に 防御的デセプションの
0.55
techniques them. complementary such benefits of using defendeveloping of caveats the
技術だ 補完する 注意事項の防衛に役立てることの利点
0.48
compared is to tokens to access
アクセスするトークンと比較すると
0.77
detection. provides defense mechanisms,
検出 防衛機構を提供する
0.58
cost-effective relatively because its relatively
相対的に費用効果が高い
0.68
proactively as actually they types of at multiple
能動的に複数のタイプで
0.43
deployment high honey files and
ハイハニーファイルの展開と
0.63
serintrusion well are can prointrusion detection intrusions
canによる侵入検知用セリントウェル
0.51
deception strategies defense showing low while example, For attackers.
偽装戦略の防御は、例えば攻撃者の場合、低い。
0.77
simple to deploy cost effectiveness honey or maintain, compared such cybersecurity mechanisms,
デプロイが簡単 費用対効果 蜂蜜 維持 サイバーセキュリティのメカニズムの比較
0.61
to enhance system protect a to attacks targets.
to攻撃対象を防御するシステムを強化する。
0.73
are deception techniques as systems, network, such significant [69], without High deployability provides design capability with
高デプロイ性のないシステム、ネットワーク、そのような重要な[69]として、設計能力を提供する。
0.65
intrusion defense deception as legacy prevention.
侵入防衛の偽装は レガシ予防だ
0.62
honeypots effective monitoring mechanism that attack features
ハニーポットが機能を攻撃する効果的な監視機構
0.59
this In deception sive employing and 1) Key Defensive to other relatively mislead relatively are traditional other control or Defensive vices to other detection or known as an vide additional to as well launch before defensive Various able layers of layers application, and data architectures.
This In deception sive employing and 1) Key Defensive to other relatively mislead relatively is traditional other control or Defensive vices to other detection or known as an vide additional as also launch before defend various able layer of layer application, and data architectures。
0.81
of system also techniques deception fensive as well as defense-in-depth (DiD) protections.
また、ディフェンス(DiD)やディフェンス(DiD)の保護も行う。
0.52
layers of Automated cyberdeception data session fuscation, significantly automated Techniques: of Defensive Deception Caveats Key 2) attacker’s motivaan obtain challenging to highly it Since is particular executing a launching and goal intent, tion, in and trivial not attack, it is to choose an optimal defensive estimated risk on based strategy deception benefit and the deception strategy.
defensive a associated with given honeypots, honey techniques Most files, honey-X (e g , to choose suboptimal honey tokens) aim to mislead attackers information.
the Due requires deception configuration, implementation Otherwise, and to easily able be deceptive tion automated is the With demand strategies tion This brings a management without
or be to the nature of deception, continual process.
偽りや継続的なプロセスに 従うかです
0.54
devices distinguish obfuscating software like attackers, there a emergence of clever honeypots high-interactive elaborated or for easily cannot be cost defense and more defense system than a deception mechanisms.
effectiveness of defensive reconfiguration, would decep-
防御的再構成の効果-decep-
0.74
deploysystem, changes deof flexibility multiple
deploysystem、deofの柔軟性を複数変更
0.75
that higher for a defensive
防御力が高くなります
0.70
growing decepattackers. in the system
攻撃力の増大 システムでは
0.63
adversaries unless techniques.
技術がない限り敵対者。
0.51
information, have attacks. techniques, flow, and improved
情報だ 攻撃がある 技術、流れ、改善
0.62
obfuscating code obto counter
obfuscating code obto counter
0.85
such as software’s security
例えばソフトウェアのセキュリティは
0.56
difficulty traditional identified poor
伝統の難しさ 特定 貧乏
0.64
by to is a
ところで へ は あ
0.61
• • • • • between Defensive Deception
• • • • • 防御的デセプションと
0.81
and Other Sim- 6
その他 sim- 6
0.73
Distinctions C. ilar Defense
区別 C. ilar Defense
0.75
Techniques and Target
技術 そして ターゲット
0.71
defensive and as well natures of how they
防御 同様に それらの性質は
0.60
mentioned as obfuscation
obfuscation (複数形 obfuscations)
0.46
functionalities Distinction
functional + -ities
0.48
terms attackers, a target moving used been has In deception.
攻撃者、すなわち 使用したターゲット移動は詐欺である。
0.66
this three these in overlap
この3つが重なり合っていて
0.58
often deception is addition, In versa.
しばしば虚偽が加わり、その逆である。
0.64
vice like aim the same how the discuss roles from each other differ aims.
aimのようなバイスプレジデントも、互いに異なる役割を議論する方法と同じである。
0.65
with Moving (MTD): Defense aim to of its leading to of level next to attacks is distinction that MTD the key to actively mislead information false using involves often form to attackers false beliefs decisions.
attack or poor functionality mainly with how to change
主に変化の仕方による攻撃または機能不足
0.80
Defensive defense or to achieve section, we techniques their MTD 1) increase to defensive deception in is similar deterring uncertainty or confusion failing or of escalation their the does However, attacks.
their attackers use any false not objects deception defensive while and be for information or the MTD make misled suboptimal system relates key effectively defensive configurations more the involves the of manipulating deception more this In perception.
彼らの攻撃者は偽の not オブジェクトを防御に使用する一方で、情報や mtd によるミスリードのサブオプティマシステムは、より効果的に防御的構成に関連づけられている。
0.71
defensive deception is attacker’s manipulating formulation solid based a on of well perception, it can cost be more effective than the considered MTD as [138] al.
防御的デセプション(defender deception)とは、攻撃者のaに基づく定式化であるsolidをうまく認識することで、mtdを[138] alと見なすよりもコストが高くなる可能性がある。 訳抜け防止モード: 防御的詐欺は、攻撃者の操作する定式化を、よく認識された点に基づく固形化である。 MTDを[138 ] al と見なすよりも費用がかかる。
0.66
of part et deploying MTD.
MTDをデプロイする部分です。
0.63
Ward defensive al.
Ward Defense al の略。
0.63
Cho while deception [46] et defensive these distinction The as deception of part MTD.
cho while deception [46] et defend これらの区別は、part mtdのデセプションである。
0.74
is not two crystal clear because defensive can as be or such techniques, using MTD deployed dynamically (e g , system configurations dynamic of changes false not it in decoys assigning use a may such information time the all omission as no response).
between deception randomness and exploitation sense,
偽りのランダムさと そして搾取感覚
0.41
deployed attacker’s network) (e g ,
配備された攻撃者 ネットワーク) (eg,
0.62
while baits or efficiently while
餌を食うか 効率的に
0.55
treated to its if
治療 その為に もし
0.65
discussed the Obfuscation: attacker to
議論した 難読化:攻撃者
0.66
Obfuscation obfuscate
Obfuscation (複数形 Obfuscations)
0.45
JavaScript obfuscation information
JavaScriptの難読化情報
0.60
2) with Distinction have used by an been metamorphic viruses [31], or malicious defender’s of terms In a perspective, to used have obfuscate been private for bytecode decompiling [42].
Chan for area conducted techniques obfuscation survey on enhancing of obfuscation and key aims the of difficulty increasing reverse (ii) mitigating logic; exploitability the (iii) tackers; preventing modifications or hiding data and (iv) information.
However, defensive that with of that lies in defensive deception involves an attacker’s perception while involved with data integrity, are also used diversifying
techniques Java or [17], techobfuscation defensive deception research separate a extensive an security system techniques as: (i) program the by atparties; the of late while obfusis it quite aligned is well obfuscation difference a subtle cognitive aspects of directly confidentiality, techniques [42] (e g , components),
with configurations, vulnerabilities unauthorized security goals Defensive
構成で 脆弱性は セキュリティ目標の防御
0.63
combination network
combination + network
0.74
popularity for applied defensive obfuscation is
応用の人気 防御の難解さは
0.59
engineering concept of by of
工学 概念 で ですから
0.63
or
あるいは
0.77
英語(論文から抽出)
日本語訳
スコア
7 with comgame A games.
7 ゲームAでプレイする。
0.72
impractical. be to considered set knowing the attack of due realistic not to is hand, the context.
現実的じゃない 現実的でない攻撃を知るための集合は、手、文脈である。
0.43
On other practical represents a class players may or may not know instance, [77].
他の実践では、クラスプレーヤーは、例えば[77]を知らないかもしれないし、知らないかもしれない。
0.56
players other For other players’ types, strategies,
他のプレイヤーは、他のプレイヤーのタイプ、戦略、
0.76
more the know incomplete games where information not
もっと知りたいのは 情報がない不完全なゲーム
0.66
dynamic of is information assumption of to taken be uncertainty
不確実性であるとする情報仮定の動的
0.72
or multistage in case sometimes plete the defender The its by adversary actions given in a inherent information game an one or of about some fully player may a functions.
a game information what know not given in players other a track prohibitive the to However, game.
あ ゲーム情報 プレイヤーに与えられていないもの 他のトラックでは、toゲームは禁止される。
0.59
and strategies, imperfect inoften game is attacker and a
不完全な不正ゲームは攻撃者であり
0.52
multistage types, a complete, information between an
多段階型、完全で、ある間の情報
0.59
as sysdynamic Players acting upon Partial Observability: 4) this In games.
として sysdynamic players acting on partial observability: 4) ゲームにおけるこれ。
0.70
and modeled dynamic are tems stochastic and time over system/environment the case, state changes in actions However, by on depends the taken all the players.
observe will players more one or scenarios, some fully not game.
プレイヤーはより多くまたはシナリオを観察し、一部は完全にゲームではない。
0.61
If observable partially a in This state.
この状態で部分的に観測可能ならば。
0.64
the results factor, an environment the system is affected by exogenous partially which the state transition results is in a special the observable case In [70].
stochastic to a partially of POSG with only a the game turns deals observable Markov POSG model with different capture as game as well information Therefore, imperfect monitoring).
stochastic (POSG) game single player, process dynamic general form of as such incomplete (i.e., information such game efficiently
確率的(ポグ)ゲーム単一プレイヤー、そのような不完全(すなわち、効率的なゲーム情報)のダイナミックな汎用形式 訳抜け防止モード: stochastic (POSG ) game single player, process dynamic general form of such incomplete (i.e.) ゲームに関する情報を効率よく
0.94
the most settings, [39].
設定が一番です [39].
0.64
that games still
あれ ゲーム それでも
0.65
an is a a 5)
アン は あ あ 5)
0.62
optimal commonly rational in
最適 一般に 合理性
0.67
Both the applied Bounded players
両方の適用例 境界選手
0.58
Rationality: are expected limited an Two main
合理性: 期待は2つのメインに制限される
0.53
its to maximize only has player search to find Strategies:
プレイヤー検索のみを最大限に活用し 戦略を探せます
0.80
bounded and between rational an game attacker and a defender.
ゲームアタッカーとディフェンダーの間に 縛られている。
0.53
A rational player can always choose an strategy utility.
合理的なプレイヤーは常に戦略の効用を選べる。
0.72
However, optimal a rational and resources bounded cannot unlimited [131].
しかし、最適有理と資源は[131]を無制限にできない。
0.73
an afford action game in strategies or Mixed Pure 6) pure pure theory are [131].
戦略における手頃なアクションゲームまたは混合純粋6)純粋純粋理論は[131]である。
0.81
A mixed or strategy with determined means strategy the strategy player’s a probability or probability 0 a a mixed strategy contrast, 1.
Zhu theory. game Stackelberg using used et identified attacks jamming paths routing deceptive against but an optimal routing considering resource allocation based on strategies.
朱説。 game stackelberg using used et identified attack jaming paths routingceptive against but a optimal routing considering resource allocation based based based based strategy (情報通信)
0.77
mixed Uncertain Future Reward 7) by multiple utility
混合不確定な将来の報酬(7) 複数ユーティリティによる
0.64
strategy is the control
戦略は コントロールは
0.76
guaranteed
guaranteeed~
0.70
player’s
player (複数形 players)
0.48
caused a Due to in Utility: variables that may be cannot deception research, environmental
caused あ 実用性-研究や環境を欺くことができない変数-
0.64
inherent the [131].
131]に固有のものです
0.57
uncertainty conditions game-theoretic defensive non-stationary by caused mainly
不確実性条件 主に引き起こされるゲーム理論の防御的非定常
0.56
uncertainty future states, In is
不確実な将来の状態は
0.74
Fig. and
フィギュア。 そして
0.57
1. defensive obfuscation. Relationships
1.防御 難解さ 関係
0.61
between defensive deception,
間 防御 だまされた
0.57
moving target defense,
動く ターゲット 防御!
0.63
by MTD techniques. used concept our on understanding the functionalities and defensive deception, MTD, and hold view based on Fig related to
which is a well-known aims Based on obfuscation, we defensive of shows how would like to each domain is that a defensive obfuscation technique can belong to either MTD or overlapping defensive area defensive techniques
as extensively to model framework cybersecurity problems: a defense strategies,
として サイバーセキュリティ問題: 防衛戦略の枠組みを 広くモデル化することです
0.61
in modeling the defender strategies,
防衛戦略をモデル化することです
0.70
attack and opponent’s key as actions system and an these discuss
相手の鍵を攻撃して 行動システムとこれらの議論は
0.76
cybersecurity
サイバーセキュリティ
0.55
elements games used of
要素 ゲーム 使用 ですから
0.70
or A. Key Game security elements of players, of a We follows.
あるいは A。 プレイヤーの鍵となるゲームセキュリティ要素は次のとおりである。
0.75
1) player. Players:
1) プレイヤー。 プレイヤー:
0.78
Pawlick where or a
Pawlick (複数形 Pawlicks)
0.50
game-theoretic taking research Most defensive game two-player a model approaches deception where the using a defender an players two and attacker are defensive two-player even a in 104].
However, 93, [81, deception game, types of different modeled deception some games players modeled [104] Zhu and each under twoa as a signaling player a sender defender game can be while honeypot either a normal an system attacker as the on type.
しかし、93,[81,deception game, different modeled deception 一部のプレイヤーは[104]Zhuをモデル化し、それぞれ2a未満のシグナリングプレーヤとして送り手ディフェンダーゲームは、通常またはシステムアタッカーをオンタイプとしてハニーポットしながら行うことができる。
0.77
Depending has receiver a defender type, the one takes its strategy.
レシーバーにはディフェンダータイプがあり、その戦略を踏襲する。
0.57
Pawlick et [105] introduced a three-player cloud defender, an attacker and a device which game between a is connected with the false to deceive signals the Complete (In) 2) players game allows parameters, such as function, reward a players,
A complete information game the knowledge of to be taken by other game the of state current
完全情報ゲームは、他のゲームによって取られるべき知識を状態電流とする
0.87
cloud where attacker. Information: full to have possible actions the and
雲だ 攻撃者だ 情報: 可能なアクションを行なえるよう全力を尽くす。
0.67
defender send can
守備 送って できる
0.60
the al.
はあ? アル
0.33
英語(論文から抽出)
日本語訳
スコア
per each movements game,
それぞれに モーションゲーム
0.56
opponent by actions) (or and non-deterministic by caused is both the uncertainty players.
行動による敵) (または、原因不明の非決定論は、不確実なプレイヤーの両方である。
0.55
In a signaling type [97, 104] where and player its opponent movement of an type.
シグナリングタイプ[97,104]において、相手のタイプの動きをプレーする。
0.74
opponent’s its knows it after action take can player an a is action, optimal an take player For it to a Utilities: 8) reward) or own both know to critical (or its payoff utility function and its opponent’s payoff function.
against’s knows it after action take can player a is action, optimal a take player for it to a utilities: 8) reward) あるいは own both know to critical (or its payoff utility function and its opponent’s payoff function)。
0.79
In a static, oneprofiles action on based strategy a game, time is reward [131].
ゲームベースの戦略に基づいた静的なoneprofilesアクションでは、time is reward [131]。
0.72
take) can actions of (i.e., a set player of all players reward repeated game), a a However, in a sequential game (i.e., action can history of profiles from the on based estimated be such in game.
テイク)シーケンシャルゲームにおけるaのアクション(つまり、すべてのプレイヤーのセットプレイヤーが繰り返しゲームに報酬を与える)、または、ゲームにおけるオンベースで推定されるプロファイルの履歴(すなわち、アクション)。 訳抜け防止モード: take ) can action of (つまり、すべてのプレーヤーのセットプレーヤーが繰り返しゲームに報酬を与える) a) しかし、シーケンシャルなゲーム(つまり、アクションはゲームにおいて、ベースから推定されるプロファイルの履歴をそのようにすることができる。
0.79
Hence, the of the a games, end the to beginning or average expected the to maximize player accumulated aims [25].
sequential over reward of the period the game game A full represents game Subgame: 9) Full Game or actions to set a considers each where possible all of player indicates utility.
A subgame its to maximize action one select of subset considers player a the subset a of full game where a to maximize its all possible actions when selecting one action includes Particularly, a sequential utility.
サブゲーム its アクションを最大化する サブセットの1つの選択は、プレイヤー a をフルゲームの部分集合 a とみなし、a は1つのアクションを特にシーケンシャルユーティリティを含む場合に可能なすべてのアクションを最大化する。
0.67
games, subgame to similar and node single a its [131].
ゲーム、サブゲーム、類似ゲーム、ノードシングルが[131]です。
0.74
is It refers tree-structure in a subtree a which game, sequential used [74] and game.
これは、ゲームが[74]とゲームで連続的に使用されるサブツリーのツリー構造を指す。 訳抜け防止モード: It is referred tree - structure in a subtree a which game 74 ] と ゲーム を逐次使用します。
0.86
form an to extensive House Cybenko an hypergame the theory to interactions the between to model uses defender.
Hypergame and attacker a a corresponding the different player’s each game strategies [153] under the addition, and Xu and Zhuang [142] used Subgame Perfect Nash Equilibsubgame) rium (SPNE) deal with to and attacker in
Game-Theoretic Defensive Deception this In game-theoretic discuss section, we the tion techniques used literature.
game-theoretic defense deception game-theoretic discussion section, we the tion techniques used literature(英語)
0.75
We in classification to game-theoretic discuss protection: techniques asset for deception obfuscation, eynets, objects, honey technologies, fake used empirical studies flow.
我々は,ゲーム理論的な議論の保護を分類する。 詐欺の難読化のためのテクニック アセット, eynets, objects, honey technologies, fake used experience studies flow。 訳抜け防止モード: we in classification to game - theoretic discuss protection 騙しの難読化, エイネット, オブジェクト, ハニー技術のための技術資産 偽の使用経験的研究フロー。
0.73
Some human are players settings where game show them how theory to defensive empirical deception in human-in-the-loop.
一部の人間はプレイヤーの設定であり、ゲームは人間のループにおける実証的詐欺の理論を示す。
0.62
A Honeypots: defensive is mainly and high between detectability by
ハニーポット: 防御性は、主に検出性によって高い
0.66
honeypot deception used two (HHs) interaction based on LHs and are HHs cost.
ハニーポットの騙しはLHsに基づく2つの(HHs)相互作用を使用し、HHsコストである。
0.61
deployment and LHs; However, than attackers detectability [69].
デプロイメントとLH; しかし、攻撃者検出性[69]よりも高い。
0.61
LHs than cost higher deployment game to signaling employed a and [104] Pawlick an where attacker system defense honeypot-based a develop investigated authors The honeypots.
lhs than cost higher deployment game to signaling used a and [104] pawlick a where attack system defense honeypot-based a developed investigation authors the honeypots. (英語)
0.85
detect to has ability the or without games with multiple models evidence of signaling or is when complete information available not.
信号の複数のモデルを持つゲームの有無、または、完全な情報が得られない場合に検出する。
0.74
In the cheapsignaling game with deception a talk games with evidence (i.e.,
偽りの安いシグナリングゲームでは、証拠(つまり、証拠)を伴うトークゲームを行う。
0.56
most studied A in the honeylow interaction [69].
多くはハネロー相互作用[69]で研究した。
0.61
The different provide HHs
異なるHHを提供する
0.90
common honeypot (LHs) pots differences deception lower incurs
common honeypot (lhs) pots difference deception lower incurs (複数形 common honeypots)
0.66
has been strategy forms: honeypots HHs
ハニーポットhhsという戦略形態です
0.52
as literature. been Zhu
文学として ずっと 朱
0.68
the in 8 a
はあ? イン 8 あ
0.56
et the also game attacker) some
など はあ? また ゲーム攻撃者)
0.59
honeypot al. evidence
ハニーポット・アル 証拠
0.57
(i.e., sender to They
(すなわち、送信者)
0.66
between is modeled probability. costless and detect found
確率のモデル化です 無費用で検出できる
0.60
signaling (i.e., an honeypot) with
ミツバチとのシグナル(すなわちハニーポット)
0.47
comreceiver), deception the that ability to detect deception does not necessarily lower defender’s
虚偽を検知する能力が必ずしも被告の能力を低下させるとは限らない。
0.54
detection), extended from cheap-talk games munication the receiver (i.e., a attacker’s utility.
the down to evidence game with been has The signaling [106, or selection in creation other works model the evidence used [106] a game with signaling 111].
beenのダウン・トゥ・エビデンスゲームは[106, or selection in creation other works model the evidence using [106] a game with signaling 1111]である。
0.73
Pawlick type and sender on estimated is based a where signaling message.
Pawlick型と推定値の送信者は、 where シグナルメッセージに基づいています。
0.65
The authors extended the a transmitted deception.
著者は送信された偽装を拡張した。
0.54
evidence probabilistic detector with a game with of can which attackers this However, signal is vulnerable to deception and the to leading signal, the analyze detecting introduced a leakage.
deception-based defense mechproposed The de(DoS) Denial-of-Service retrieve the attract attacker sigintent.
deception-based Defense mechproposed The de(DoS) Denial-of-Service retrieve the attract attacker sigintent。
0.78
the used real equilibrium to model perfect Bayesian the Basak attacker.
本物の均衡を使って 完全なベイズ人バサック攻撃をモデル化した
0.63
defender and et al.
ディフェンダーとアル。
0.34
type an identify to attacker tools The strategies.
攻撃ツールにidをタイプして戦略を実行します。
0.57
defensive better when in and his actions goals game-theoretic Through ap(e g , honeypots) attackers early
inとそのアクションがap(honeypots)攻撃によるゲーム理論を早期に達成した場合の防御性向上 訳抜け防止モード: in, and his action goal game -theoretic through ap(e, ハニーポット) 攻撃者は早く
0.70
C¸ eker anism to fender deploys about information games with naling between the interactions cyberdeception used [24] take possible as as early encapsulated type attacker is campaign.
[93] used a non-cooperative Bayesian information is follower.
[93]非協力ベイズ情報の利用は従者である。
0.67
towards game. that honeypot honeypot the attacker attack graphs performance model and considered research.
ゲームへ。 ハニーポット ハニーポット 攻撃者はグラフを攻撃し 研究を検討
0.62
an authors motivation, et [81] al.
著者のモチベーション, et [81] al.
0.70
honeypots, deploy strategies to extended The game.
ハニーポット、ゲームを拡張する戦略を展開。
0.71
selection additional allows selection game are strategies in which attack conducted authors The [86, performance the compare analysis of disadvantages and advantages discussed game-theoretic models in the defensive
Aggarwal et rational incomplete information game making in the presence of with two timing-based deception by applying early or in the rounds of games and of extent and deception.
aggarwal et rational incomplete information game making in presence with two timing-based deception by applied early or in the rounds of games and of extent and deception. 英語)
0.82
the deception using amount of attack decrease effectively using a different timing any introduce in difference allocation honeypot Various have been considers and
issue honeypot by a selfgame directs the high-interaction of equilibrium with sequential, decisiona honeypot and combined this model introduced late deception investigated the effect timing high showed results Their can of timing late and However, the on actions network.
et Nan [99, should that defender a for tions deceiving the performing a for be used fake nodes.
et nan [99, that defender a for tions deceive the performing a be used fake node.”【イディオム・格言的】
0.73
attacker into expending Cons: Pros and defensive popular honeypot decades.
乱暴なCons: プロと防御的な人気ハニーポットへの攻撃。
0.56
over Since technology which deception vulnerabilities, additional introduce is aim its not by the honeypots, the if an attacker successfully (i.e., components system can honeypots intelligence attack additional assets) system with detection can which intrusion new lead signatures.
However, maintaining attack honeypots incurs experformance potential a tra
しかし アタックハニーポットの維持は 性能を低下させる
0.63
the nodes computation task while resources attacking is most has matured any lured existing
資源が攻撃されている間、ノードの計算タスクは、最も成熟したもので、
0.58
heuristic 100] to intelligently select
ヒューリスティック100] インテリジェントに選択する
0.72
to is protect while to
保護する; 保護する; 保護する
0.53
the collecting improving approach. provided Nash
収集の改善は 接近 提供 Nash
0.64
of that deception games, Anwar
その騙しは ゲーム、アンウォー
0.56
game model for the
ゲームモデル その為
0.62
addition, authors there cost.
加えて 作者 そこ コスト。
0.65
The still In et
それでも 院 など
0.46
A is 9 existence to due the paths routing or honeypots of intelligent, as more becomes it recently, for honeypots effectively complexity and cost.
A は 9 ルーティングの経路や 知性のあるハニーポットの存在 最近になって より複雑でコストのかかるハニーポットが 訳抜け防止モード: A は 9 インテリジェントな経路またはハニーポットの存在 最近では どんどん増えていきますが ハニーポットの複雑さとコストは効果的です。
0.75
El-Kosairy Honeywebs: framework that provides detect malicious
El-Kosairy Honeywebs: 悪意を検知するフレームワーク
0.81
of resource have been sophisticated the honeypots, consumption.
資源は洗練され ハニーポット 消費
0.44
such as However, In investigated.
しかし、調査ではそうである。
0.57
little have attackers been develop to challenging attackers in terms
攻撃者が攻撃者に挑戦するために 開発されているものはほとんどありません
0.47
more deceiving
more deceiving
0.85
drawbacks degradation additional the addition, emerged realistic of both 2) server a honeyweb to traffics to deception decoy defender the and Pros based on honeypots fake assistant be
and web a web application firewall with and forward suspicious traffics Typically, this combines and token, honey honeypot, action the main definition, of a (VM) consume to
web web アプリケーションファイアウォール 疑わしいトラフィックを転送する 一般的に、これは、(vm) が消費する、主要な定義である、 and token、honey honeypot、action the main definitionを組み合わせたものです。
0.65
including game a resources.
ゲーム・ア・リソースを含む。
0.58
are approaches. tokens or while cost
アプローチです トークン、またはコスト
0.56
technologies. [65] an attacker defender) players in as a The is based framework on information.
技術。 [65] 攻撃者ディフェンダー) 情報に基づいたフレームワークとしてプレイするプレーヤー。
0.72
In their game placement about the of probe the target host to attacker’s probability.
彼らのゲームでは、攻撃者の確率にターゲットホストを配置する。
0.66
The compromising and a equilibrium strategy how they are to system.
システムに対する妥協戦略と均衡戦略です
0.52
architecture particularly rarely They used assist honey files.
建築 特にハチミツのファイルを 使うことは滅多にない
0.65
Developing honey less its an honeypots.
ハチミツの栽培は ハチミツよりも少ない
0.44
Hence, not defensive and Grosu (i.e., a game.
したがって、防御とグロス(つまりゲーム)ではない。
0.80
imperfect
imperfect~
0.73
honeypot technologies, the implementing effort and Cons: Honeywebs game-theoretic along with incurs the used without other Garg Honeynets: 3) and a honeynet system non-cooperative strategic games extensive deception defender makes model, the can the a honeypot while some roles with true their identify probing of considers utility both the cost the mixed studied honeypot.
honeypot technologies, the implementing effort and cons: honeywebs game-theoretic with inusing the without other garg honeynets: 3) and a honeynet system non-cooperative strategic games extensive deception defender makes model, the can the a honeypot. (英語)
0.57
They host or showed games these solutions of and honeynet the strategies of the determine a proposed Dimitriadis honeynet [55] on architecture This an attacker-defender game.
emulation, their gateway each are considered as and individual players.
エミュレーション、それぞれのゲートウェイは個々のプレイヤーと見なされる。
0.75
The security each of identify is player payoff to used equilibrium.
それぞれが識別するセキュリティは、使用済み均衡に対するプレイヤーの報酬である。
0.65
a Nash and Cons: Pros is honeynet The a system and architecture inside with to mainly deal designed attackers allow a system manager to monitor threats and learn from them.
A Nash and Cons: Pros is honeynet システムとアーキテクチャは、主に設計された攻撃者を扱い、システムマネージャが脅威を監視し、そこから学ぶことができる。
0.81
The Project Honeynet example typical a is [129] honeynet of consisting of multiple the honeynet works with multiple honeypots, how to optimally deploy them needs more investigation based additional and deception of deployment
The [125] of an designed inference sensitive entities.
125] 推論に敏感なエンティティを 設計しました
0.53
This attacks. They information design
これ 攻撃だ 情報デザインや
0.72
modeled a obfuscation adaptive
難読化適応のモデル化
0.55
attacker together and work both the on costs.
攻撃者 共に オンコストで 働きます。
0.61
Obfuscation: between a
難解:aの間
0.55
英語(論文から抽出)
日本語訳
スコア
linear provided
linear~ provided
0.80
caused by to search a minimum
最小の探索によって引き起こされる
0.74
can observe valuable information of users and noises obfuscation.
ユーザの貴重な情報と ノイズの難読化を観測できます
0.64
They program solutions an optimization problem that provably achieves for utility
彼らはユーティリティのために確実に達成できる最適化問題をプログラムで解決する
0.60
bounds. a defensive zero-sum, analyzed
境界だ 分析された防御ゼロサム
0.59
privacy those under loss al.
プライバシーは損失アルだ
0.46
et proposed [71] Hespanha non-cooperative, on work based information.
etは[71] hespanha non-cooperative, on work based informationを提案した。
0.72
They with partial manipulate game can competitive a the maximize to its opponents found They that there deception.
部分的な操作ゲームを持つ彼らは、敵に最大限の競争力を与えることができる。
0.71
be to presented to information Cons: Pros and Compared as such honey-X techniques, obfuscation is easy data into normal noise adding defender legitimate a or research obfuscation how to hide real attacker.
be to presented to information Cons: Pros and Compared as such honey-X techniques, obfuscation is easy data into normal noise add defender legitimate a or research obfuscation how hide real attacker。
0.85
framedeception games stochastic in defender how a available information to defensive of the effectiveness an exists optimal amount of deceive effectively an attacker.
deception defensive to other the techniques, key benefit of low cost.
偽造は他の技術に 防御する 低コストの鍵となる利益だ
0.71
However, deployability with also information can a data hand, other the On of develop aims a to how rather than an
しかし、情報も含むデプロイ性はデータハンドになり得るし、他のOn of Developmentは、どのようにしてデータハンドではなく、どのようにデプロイするかを目標にしている。
0.37
confuse most technique to detect
ほとんどのテクニックを混同して検出し
0.52
user. mainly information
ユーザー。 主に情報
0.74
a the an to device
あ はあ? と 装置
0.51
Deception consider interactions games and
だまを考える インタラクションゲームと
0.56
game-theoretic In many defense deception as a deceive to signal as [105] modeled game a of attacker an defender, and that can deal with authors designed the
The a defender and attacker between to model the interactions are model used signaling where compromised be cloud which may the the between designed and probability.
[142] a Xu Zhuang with certain a defender where an attacker and a the attacker between game and target of vulnerability investigate to a the the has ability the to technologies defensive apply can change the defender studied mainly work This device.
certain of a vulnerability attackers’ preparation for launching an attack affects how the of effectiveness rethe strategies.
攻撃を開始するための攻撃者の準備の一部が、その効果が戦略にどのように影響するかを判断する。
0.59
As deception defensive the subgame perfect Nash Equilibrium authors sult, the applied the the analyze to (SPNE) terrorist’s the and costly learning leveraged a [145] al.
偽装の防御として、サブゲーム『パーフェクトナッシュ・ナッシュ』の著者たちはsultを、分析をテロリストの『the and costly learning』に応用し、[145] alを活用した。 訳抜け防止モード: 欺きの防御として the sub game perfect nash equilibrium authors sult, the applied the analysis to (spne ) terrorist ’s. (英語) 145 ] al を利用した。
0.68
et Yin secrete recourse resource to game Stackelberg a and defender.
et yin secrete recourse resource to game stackelberg a and defender(英語)
0.79
The a attacker of analysis a using ical defender.
icalディフェンダーを使用した分析のアタッカー。
0.60
They the played calculated defender and the when attacker the can attacking.
プレイヤーが計算したディフェンダーと攻撃者が攻撃する時。
0.67
strategic defender’s fake to mislead attackers.
戦略的なディフェンダーは、攻撃者を誤解させる偽物だ。
0.54
They the interactions authors conducted both pure and mixed optimal provided an rate accuracy the of deploy unlimited surveillance
defensive and hypergame, where game an ulated by asymmetric an the attacker deception strategies while
防御とハイパーゲーム:ゲームaが攻撃者が欺く戦略を非対称に表現する
0.76
does 10 a
そうでしょう 10 あ
0.61
by a a defender.
ところで あ あ ディフェンダー
0.45
information. attacker an set strategies
情報だ 攻撃者an 戦略設定
0.70
the introduces opponent. knowledge
紹介は 相手。 知識
0.63
other players have defender
他のプレーヤーはディフェンダーを持っています
0.39
game This theory and Hor´ak for network deception one-sided
ゲーム この理論と Hor ́ak for network deception one-sided
0.75
deception Technologies: cyberdeception a
デセプション技術:サイバーデセプションa
0.56
structure. an abstract deception signal is deception model concept a to to defender.
構造。 抽象デセプション信号はディフェンダーに対するデセプションモデル概念aである。
0.71
Due the nature a flexibility high
柔軟性が高い性質のため
0.81
and payoff true Cons: and Pros way game game to a apply of the an between attacker can that it formulation, has game abstracted other hand, the techniques.
and payoff true cons: and pros way game game to a applied of the an between attack can that it formula, have game abstracted other hand, the technique.”【イディオム・格言的】
0.79
On deception of use various types problem in cybersecurity to model challenging it a a quite is the as particular context proposed deception game framework specific not does use defensive 6) General Cyberdeception of by
techniques. existing Some to technologies [73] et al.
テクニック。 existing Some to Technology[73] et al.
0.71
and security on strategy an POSG (partially perfect has defender imperfect In sequences take and actions of to obtain or attempt opponent actions true that assumed work This rational a and opponent its towards its actions of knowledge has no a network attacker hurdle to identify a target and a network.
POSG (Partially perfect has defender imperfect In sequences take and action to obtain or attempt opponent action thatsum work This rational a and opponent its towards its action of knowledge have no network attacker hurdle to identify a target and a network。 訳抜け防止モード: 戦略上のセキュリティ posg (部分的には完全で、シーケンスが不完全である) 相手の行動を真に獲得または試みる行為 この合理的なaを仮定し、その知識の行動に対して反対する ターゲットとネットワークを識別するためのネットワーク攻撃のハードルはありません。
0.73
the of in presence its defender aware is improve deception defensive to [45] al.
被告が認識している存在は 詐欺防御を[45]alに改善させる
0.65
discussed SDN environbased an on dependability and system security technologies.
sdn 環境ベースの on dependability とシステムセキュリティ技術について論じた。
0.63
The authors ment utilizing a set honey of to requirements critical the are discussed what effective realize evaluation methidentified and defensive promising deception and Zhu and including metrics ods evaluation testbeds.
a where is attacker a the is leader and the defender a follower.
a where is attack a is leader and the defender a follower.”【イディオム・格言的】
0.69
they (MDP) Process Through an Markov Decision investigated of an attacker noncritical points.
They (MDP) Process through an Markov Decision investigated to a attacker non critical points。
0.78
Pros and combined defender on based of attacks.
攻撃に基づくプロとコンバインドディフェンダー。
0.55
perform multi-staged Cons: defensive multiple Since defender’s a set of used and a as against to choices defend can make more that different merits to different can introduce deal with APT attackers which to In particular,
multiple profiles, or capture to game Bayesian and an attacker advance information one-shot proposed their Eastman (TE)
複数のプロファイル、またはゲームベイズに捕獲し、攻撃者がイーストマン(TE)を提案した一発の情報
0.66
are the attackers types can defensive
攻撃者は防御できるのか?
0.68
performance on
performance (複数形 performances)
0.31
in this device deceptions strategies,
この装置では 偽装戦略
0.62
of Tennessee a The the
テネシー州の ザ・ザ・ザ・
0.42
investigated simulation,
調査 シミュレーション
0.56
deception various
deception 様々な
0.79
types attacks, the
種類 攻撃! はあ?
0.55
potential behavior
potential 行動
0.79
using of static
利用 ですから static
0.70
the authors at
はあ? 作者 に
0.58
英語(論文から抽出)
日本語訳
スコア
a is et of
あ は など ですから
0.59
optimal Mohammadi provide more combing more
最適 モハンマディ もっと火を付けて
0.54
deal with techniques it not defensive
防御的でない技術を扱う
0.73
relevant than deployment games with strategy the in external
配備よりも 対外戦略を持つゲーム
0.55
additional identify a techniques.
追加で テクニックを特定できる
0.64
Objects: resources to deception one costs.
対象: 1つのコストを欺くためのリソースです
0.56
In addition, of multiple combination
加えて、複数の組み合わせ
0.77
deception can them. However, introduces trivial to deception Fake 7) signaling player optimal an ing avatar use can an an identify to users.
欺くことはできる。 しかし trivial to deception fake 7) signaling player は ing アバターの使用を最適なものにすることでユーザを識別することができる。
0.70
This game optimal an derived expected the iment, the the avatar or 105], games [104, (i.e., a second mover where (i.e., sender) The key information.
本ゲームは、誘導された期待されたiment、アバターまたは105]、ゲーム104(すなわち、送信者が鍵情報となる第2の移動機)を最適とする。 訳抜け防止モード: このゲームは、導出予想のイメント、アバターを最適にする または 105 ], game [ 104, ( i.e., a second mover where ( i.e., sender ) キー情報。
0.79
uncertainty for creating which identity a fake the not or whether [38] et al.
偽のidを作成するための不確実性は、[38]などである。
0.68
Casey and a defender attacker agent that may a hostile order In system.
Caseyとディフェンダー攻撃エージェントは、敵対的なオーダーInシステムである可能性がある。
0.65
the whole proposed authors a honey a basic designing by agent interaction the model between [37] Casey et al.
various A under user internal game as fake signaling external with interacting attacker by considered the payoff two players and expertheir In alarms.
various A under user internal game as fake signaling external with interacting attack by consider the payoff two player and expertheir In alarms。
0.80
raising of threshold actions guide a metric payoff is used to of other works defender.
閾値アクションの引き上げは、他のワークディフェンダーのメトリックペイオフが使用される。
0.62
Unlike using signaling their signaling games put the defender as a a first mover is an attacker receiver) while incomplete with played are the games is of idea using the signaling games the attacker because the defender uses the make can about doubtful attacker a receiver user.
シグナリングゲームを使用する場合とは異なり、ディフェンダーを第1のムーブラーとして配置することは攻撃者受信機である)が、プレイが不完全な場合は、ディフェンダーが攻撃者に対して疑わしい攻撃を行うため、攻撃者のシグナリングゲームを使用する。 訳抜け防止モード: シグナリングゲームを使うのと異なり、ディフェンダーは最初のムーバーとなった 攻撃者レシーバー ) プレイが不完全なのはゲームです 攻撃者は make を受信者の疑わしい攻撃者に使用するため、攻撃者はシグナリングゲームを使うのが理想的です。
0.73
is real between interactions discussed They of an organization.
議論された相互作用の間は現実的です。
0.58
surface organization obtain of this kind to mitigate the confuse to surface signaling compliance and agents the insider the signaling game to with
an insider considered harm and threats, the malicious game to organization.
組織への悪質なゲームとして 危害と脅威を考慮に入れたインサイダー。
0.63
an threat in the model intelligence and a
モデルインテリジェンスとAの脅威は
0.61
discussed further applied a agents
エージェントのさらなる適用について
0.66
learning al. a machine operating
学習 アル あ マシン操作
0.58
Polynomial general-sum game, to model
多項式 一般サムゲーム, モデル
0.64
a et [132]
あ など [132]
0.65
introduced a the (CCGs), Camouflage Games Cyber performing attacker and an defender between the defender can mask The sance as information, an such fake network attacks.
To reconnaissance of effect to mitigate introduced optimal they the Fully Approximation Scheme (FPTAS) given constraints Mixed Integer Linear Program (MILP) to search for strategy.
HD is number utility elberg strategy The results significantly in a Pros a as
hdはナンバーユーティリティのelberg戦略で、pros aでかなりの結果が得られた
0.66
The HE honeybots. of honeybots The the that the network.
ハニーボット。 ハニーボットはネットワークです。
0.33
Although deception of optimization model.
だまされてはいるが 最適化モデルです
0.48
game based on showed decrease
表示された減少に基づくゲーム
0.69
large and defensive social Cons:
大きくて防御的な 社会的な意見:
0.62
using technique considered and chose PAS information a small infected
技術の利用 小さい感染したPAS情報の検討と選択
0.72
infiltration of social SODEXO so-called
社会的SODEXOの浸透
0.63
social The (SOcial of Honeybot consisting and Protec(HE), a moderate composed of and dynamics the by botmaster Stackdeployment optimal an gathered by honeybots.
social the (social of honeybot composed and protec(he)は、by botmaster stackdeployment(英語版)の中間的構成とダイナミクスである。
0.57
can honeybots number of population (i.e., botnet)
ミツバチの個体数(すなわちボットネット)を
0.46
identities costly less
アイデンティティーのコストは
0.55
or and avatars rela-
または アバター・レラ
0.54
fake is a a 11
偽物は あ あ 11
0.62
a and patches confusion
あ そして パッチ 混乱
0.63
additional alarms. of
さらに 警報だ ですから
0.57
boundary common is patches be users and work has such as extra attackers
境界共通 パッチは ユーザーや仕事には 余分な攻撃者や
0.66
In deception Patches: traditional (2)
偽りのパッチ:伝統的(2)
0.76
administrator Enterprise to the program misbehavior vulnerabilities security to
administrator enterprise to the program misbehavior vulnerabilities security to
0.83
patched, system vulnerabilities of As the past.
As the pastのパッチ、システム脆弱性。
0.78
from patch fake a provided the analyze try that to technique patch fake is input parts.
patch fake aから、patch fakeのテクニックを試す分析は、入力部品である。
0.75
One to normal it can introduce However, little increase false fake identities, the adverse effect using or users producing legitimate for confusion intelligent of effect addition, the been detectability studied.
not has compohas patch mainly A honey two vulnerasoftware known to patch fix fake to an to mislead code attacker patches are fake [19].
compohasパッチは、主にhoney two vulneraソフトウェアで、不正なコードのアタッカーパッチに偽の修正をパッチすることが知られている [19]。
0.80
In the literature, [19]. [16] or ghost patches that can the term patches honey ability the has it but patch; also allow and a attacker decoy, to the success.
文学では[19]. [16]またはゴーストパッチ(ghost patch)は、ハニー能力にパッチを当てることができる。 訳抜け防止モード: 文学では[19]. [16 ]またはゴーストパッチ という用語は、ハニー能力を持っている人にパッチを当てることができます しかし、patch ; also allow and a attack decoy, to the success。
0.65
In addition, the authors server a to web scale honey patches.
さらに、サーバaからwebスケールのhoneyパッチも作成する。
0.63
lack [19]. releasing contain an by solution, technique historical designed vulnerabilities.
欠落[19]. リリースには解決方法と 歴史的に設計された脆弱性が含まれます
0.57
a creating decoy attacker’s the file decoy is part a is misleads the evaluated analysis
regular same as function as a redirect efficiently to an attacker to achieve a fake allowing provided strategy a regular transfer into systems are often exposed by the vulnerabilities due checking subtle of way the eliminate to A patches.
as However, the security of and types vulnerability location the obtain a blueprint could attacker patches the security analyzing Spafford [19] Avery and attackers the for misleading this patches.
for bogus control flow the change not engineering, reverse the output but does this experiment, their program.
ボグ制御フローでは エンジニアリングではなく 出力を逆転させる この実験は 彼らのプログラムだ
0.77
was technique In program where in [33] the program runtime and this the measure of technique.
33] プログラムのランタイムと,それがテクニックの尺度であるプログラムのテクニックです。
0.71
[20] and Wallrabenstein Avery evaluated (i.e., deceptive of three patches faux, response) by into the them the which module security techniques that they found while security proposed tance of assessing patches security meaningful Cho based game deception and attacker defender a work game.
This decision its affect can affect can which the used work Stochastic of the hypergame where for misleading strategy deception a choose fake the patches and can compromise, which to lead Pros and Cons: Honey patches techniques tion
effectiveness the and active obfuscated, game-based proposed addition, In guidelines.
有効性とアクティブな難読化ゲームベースの追加提案。
0.55
to are meet the unable the emphasizing imporbased on a clear and a modeled [48] al.
クリア及びモデル化された[48]alに基づいて強調することができない。
0.55
et which theory hypergame in an different given perceptions in a (mis)perception how a player’s take, strategies choose to making the in utility player’s given This probabilistic model a Perti Nets to build patches defender uses fake as a believing in to attacker the node non-vulnerable target as failure.
real packets developing defensive network flow are: applying lenges of of and risk increase may packets congestion deceptive the (2) packets; real for delay the delivery the extra incur of and transfer to capacity limited a node source generate has and real requiring packets, a balance between and flows.
a Their altruistic choosing when the improves overall sources.
ソース全体を改善するとき、利他的な選択をする。
0.55
node behavior considered a et al.
ノードの挙動を考慮に入れる。
0.62
[155] Similarly, Zhu selecting sending deceptive real for paths routing a and the source the flow, deceptive node is rate deceptive flow as well real of and as flow.
[155] 同様に、zhuは経路をルーティングする経路とフローの源に対して偽りの現実を送ることを選択し、偽りのノードは偽りのフローである。 訳抜け防止モード: [155 ] 同様に Zhu selecting も a をルーティングする経路と、流れの源である deceptive node に対して deceptive real を送る 浮動小数点数の流れと 流れの速さです
0.84
work introduced the such the Stackelberg of equilibrium equilibria.
研究はそのような平衡平衡のスタックルベルクを導入した。
0.63
the Miah system, performing reconnaissance called attacker between attacks.
攻撃間攻撃と呼ばれる偵察を行うmiahシステム。
0.71
and the Stackelberg the non-zero-sum deceptive signaling game.
そして、stackelberg the non-zero-sum deceptive signaling game。
0.75
in cyber-physical framework to deal with APT attacks systems.
APT攻撃システムを扱うサイバー物理フレームワーク。
0.59
system via obtain attacks the Under to aiming bait this attacks, reconnaissance scanning or the attackers.
system via get the under to aim bait this attack, reconnaissance scanning or the attacks.”【イディオム・格言的】
0.70
information This the to game-theoretic hierarchical concept of solved defender does the semi-definite programming problem where a perfect not considering partial noisy or observations Cons: Pros and to approach deception be actions which cannot such ception technologies, However, fingerprint.
情報 この解決されたディフェンダーのゲーム理論的階層的概念は、パーフェクトが部分的なノイズや観察を考慮しないという半確定的なプログラミング問題を行う。 訳抜け防止モード: 情報 this the to game -theoretic hierarchy concept of solve defender does the semi-defined programming problem, a perfect not consider partial noise or observations cons: pros and approach deception be action しかし、このような認識技術は、指紋ではできない。
0.81
and real fake network and performance network we III, techniques, and
本物の偽のネットワークや パフォーマンス・ネットワーク 第三部、技術、そして
0.77
congestion of other that results proved of utility the source single Before flows.
ソースのシングル before flow が有効であることを証明した他のコングリゲーション。
0.69
choose allowed to the as the path of concepts, solution equilibrium (PSE), the rate counterparts strategy and mixed their game.
選択は、概念の経路、解均衡(pse)、利率対応戦略、ゲームの混合として許される。
0.65
Their such exist that results there proved et al.
それらは、その結果が証明されている。
0.64
[95] designed deceptive network flow a Snaz, to mislead the attacker interaction the They model two a with players and Bas¸ar [121]
or by goal. the towards defensive flow is network malicious mitigate effectively defended deby traditional as malicious network flow scanning highly to it balance is flows additional that degradation.
However, scientists decision making cognitive some also subjects human using experiments empirical assigned which consider to defenders or attackers as game.
et Cranford [50, experiment empirical between an game realize signaling to a and attacker defensive defender where the uses defender signals, deception limited with where players humans are reflecting cognition, theory.
et cranford [50, experiment experimental between a game realize signaling to a and attack defense defender, using defender signal, deception limited with players humans are reflecting cognition, theory.] (英語)
0.77
bounded To in rationality game measure the effectiveness techniques, of deception defensive Ferguson-Walter [62] [64] also al.
bounded To in rationality game measure the effect technique, of deception Defense Ferguson-Walter [62] [64] also al.
0.89
and Ferguson-Walter conducted team memexperiment with empirical red bers different at study network a participants in types instance, For deception scenarios.
of decoy devices are described explicitly for of deceptive showed that to the participant.
デコイの装置は 参加者に見せた偽装で 明確に説明されています
0.66
The defensive techniques of aware took they participants the when are any taking shows time much before more that move slower to deception made them Aggarwal tool, simulation study developed [4] et to a al.
reconnaissance participants network in attacks a timing introducing of the studied effect showed intervals.
偵察参加者ネットワークの攻撃 研究効果の導入タイミングは 間隔を示しました
0.77
Their results performed honeypots more on attacks the may theorists game Pure a is game not experiments empirical deception game studies However, we discuss these chance to give be aware of a can that experiments game at traditional of a game theory, their bounded rationality, players, corresponding can
5月理論家ゲームpure a is game not experiment experimental deception game studies(英語版) しかし、これらの機会は、伝統的なゲーム理論におけるゲーム実験、彼らの有界合理性、プレイヤー、対応するcanのcanに注意を向けるものである。
0.77
existence results the deception, action.
存在は偽り、行動をもたらす。
0.50
This and attack. called HackIt, stage deception that the than often argue that this game-theoretic
これと攻撃。 HackItという,このゲーム理論をよく主張するステージ詐欺
0.65
empirical game. to empirical subjects-based structure follow the partly more two consisting or of their opponent strategies and decision making.
various domains, extensively been behaviors system section, we first and approaches defensive deception
様々なドメイン 広範囲にわたる行動システム 第一に 防衛上の詐欺にアプローチし
0.71
become more in applications cybersecurity.
アプリケーションのサイバーセキュリティが向上します
0.62
ML techniques have including learning for adopted automating attacks domain in the cyberdeception In this discuss the key to implement ML-based steps survey extensive ML-based on an conduct literature.
A. of Implementing ML-Based Defensive Deception Key Steps have been Generation: Dataset 1) malicious detecting used mainly in based activities on or honeypots [128].
attacks which make datasets; it annotated datasets.
攻撃は データセット; 注釈付きデータセット。
0.58
have been more using ML-based should step to includes
MLベースの should の使用がより多くなっています
0.69
based complete datasets are
ベース 完全なデータセットは
0.60
obtaining However, trivial on the often confidential due organization owning unknown and related applications Pre-Processing: Datasets learning ahead of from the This reduction Feature data goal the accuracy.
Training: Training dataset process ing the of [68, 117].
トレーニング: [68, 117]のトレーニングデータセットプロセス。
0.53
the testing Testing: dataset performance evaluate trained [117].
テスト: トレーニングされた[117]データセットのパフォーマンスを評価する。
0.68
the dataset. [68].
データセット。 [68].
0.67
It is Extraction: the large extraction to
それは抽出である:大規模な抽出
0.77
learning detector A the detector
学習検出器 A 検出器
0.88
because of relevant of feature
関係があるから 特徴は
0.68
variables • • • •
変数 • • • •
0.82
cybersecurity reliable following reasons: (i) to security reasons of and (ii) the difficult
サイバーセキュリティの信頼性:(i)セキュリティ上の理由と(ii)難しさ
0.73
is datasets company or
データセットは会社か
0.70
not datasets are such an a inherent there are obtain to accurate cybersecurity Recently, security
データセットは、最近のサイバーセキュリティの正確性、セキュリティに固有のものではありません。
0.58
available approaches be carefully eliminate data
利用可能なアプローチはデータを慎重に排除する
0.61
as more [127]. pre-processed noises and
127 以上です. プリプロセスノイズとその対策
0.46
unwanted cleaning, editing,
望ましくない 掃除 編集 編集
0.51
to challenging of number is to construct describe
へ 数字の挑戦は記述を構成することです
0.65
variables a data complex involved.
変数 a データ 複雑に絡んでる
0.69
The combination of sufficient with
enough (複数形 enoughs)
0.47
analyze the is and of dataset a examples used learn to is used
分析 はあ? と データセットでは、学習に使用される例が使われます
0.56
durparameters
durparameters
0.85
the is a (i.e,
はあ? a (複数形 as)
0.49
of set detection
ですから セット検出
0.65
examples accuracy) used of to a
例 正確さ) 使用 aに
0.69
• Evaluation: the in performance of [117].
• 評価: in 性能は[117]。
0.68
the data Independent
はあ? データ 独立
0.63
and detector new data to avoid
検出器は 避けるための新しいデータ
0.74
to are evaluate used problems overfitting
使用済みの問題を過度に評価する
0.66
a In B. good
あ 院 B。 よかった
0.56
technique honeypots, ML-Based Defensive Deception (OSNs), networks social online Honeypots: 1) Social to bad in contrast bots as so-called the social avatars.
技法 ハニーポット ML-based Defensive Deception (OSNs), network social online Honeypots: 1) Social to bad in contrast bots as as the social avatars。
0.63
network creating studied by been have bots, social to dismechanism proposed an ML-based al.
ネットワークの創造はボットによって研究され、社会から非機械論はMLベースのalを提案した。
0.50
Lee et [88] honeypots as a social authors used spammers.
社会作家のLee et[88]はスパマーを使った。
0.64
The cover social spammer activities.
社交スパマー活動のカバー。
0.60
defensive deception to monitor are used to improve The data from spam and legitimate profiles classify spam can classifier.
system an ML-based positive true rate automatically.
mlベースの正の真率を自動でシステム化する。
0.59
profiles compared ML-based various of (FNR) false and (TPR) mechproposed the of effectiveness show to classifiers to honeypots social developed Lee anism.
and likers. developed authors feature-based strategies
好きな人たちも 発達した著者の特徴に基づく戦略
0.44
al. on The behavioral This detection
アル この発見の行動について
0.45
results combinations. feature honeypots El Younes al.
結果の組み合わせ。 ハニーポットEl Younes al。
0.68
to featurediscover malicious based strategies as well to the malicious profiles and analyzed the collected collect data of data on a by Weka suite logistic ML support (e g , (SVM), K-Means, Expectation Maximization, vector machine [154] of grouping).
Zhu or hierarchical introduced the concept Twitter honeypots’ ‘active active capture accounts that can 1,814 every new spammers more than identified day.
They the examined Twitter the accounts and of key of ML algorithms, a using In honeypots.
彼らはtwitterで、ハニーポットを使ったmlアルゴリズムのアカウントとキーを調査した。 訳抜け防止モード: 彼らはTwitterのアカウントを調べ、MLアルゴリズムの鍵を握った。 A using In honeypots .
0.77
active addition, suite such as SVM, logistic regression, J48 Tree, and unbalanced impact examined the the AdaBoost M1, authors datasets the detection accuracy of the different ML algorithms.
Badri honeypot social used [21] to pages collect are likes fake Facebook where provided by paid four types obtained authors of user profiles distinctive the features as patterns of fake robustness the evaluated of their ML-based on based synthetic datasets which have been modified to reflect and coordinated individual et attack [144] al.
badri honeypot social used [21] to pages collect is likes fake facebook, provided by paid four types obtained authors of user profile unique as pattern of fake robustness, the evaluation of their ml-based based based synthetic datasets was designed to modified to reflect and coordinated individual et attack [144] al. (英語)
0.83
Yang social passive proposed a spammer’s honeypot collect to a considering by preferences various the social behaviors of honeypot.
Yang Social passiveは、スパマーのハニーポットが、ハニーポットの様々な社会的行動の好みによって収集する、と提案した。
0.57
The considered tweet include tweet design features keywords, tweet frequency, as well and tweet as the users’ of behaviors famous topics conducted authors installation.
application accounts The and in-depth what types of social honeypot features on analysis adversaries social collecting rate can of higher a The result.
the on based honeypots and social the normal than times 26 has improved shown faster a honeypot social collecting social adversaries based on the in honeypot random forest evaluation using a and Pros Cons: The luring relied mainly on mers in OSNs collect more and behavioral in of terms novel existing of limitations Some the mainly the are efforts to social network attacks (e g , cyberstalking,
a と Pros Cons を用いた、ハニーポットのランダムな森林評価に基づく、ハニーポットの社会的な敵の収集は、26 倍の速さで改善された。 OSN のメアに主に依存する誘惑は、制限のある新しい用語で、より多く、行動的に収集される。
0.48
144] 88, 89, attract spamparticularly spammers.
144]88,89,特にスパマーを惹きつける。
0.74
(i) include: not other cybergroomers, human trafficking, based
(i)他のサイバー・グローマーや人身売買などではなく
0.54
[60, to intelligence of honeypots spammers,
【60年、ハニーポットスパマーの知性】
0.44
attack characteristics social detect
攻撃特性 社会的検知
0.87
classifier. in work algorithms
分類器 イン 作業アルゴリズム
0.63
works deception
work deception
0.79
introduce enhanced cyberbullying);
強化の導入 サイバーいじめ)
0.62
techniques discussed features models.
技法 討論 特徴 モデル。
0.68
current (ii) most
電流 (ii) ほとんど
0.74
are or but not
は あるいは でも いや
0.69
really on behaviors, user characteristics; attacker’s as an to evaluate on static datasets no there implies is that interactions dynamic considers (iv) defender; and there lack effectiveness of social honeypots attack intelligence Honey profiles
[130] 2) honey three in networks, Facebook, and authors collected users’ for year where data a datasets include both legitimate and users’ and the honey profiles are spread in different networks.
関連スポンサーコンテンツ [130] 2) honey three in networks, facebook, and authors collect users’s for yearでは、データセットには正規データとユーザの両方が含まれており、honeyプロファイルは異なるネットワークに分散している。
0.75
Further, this work captured both spam campaigns shared URL.
さらに、この研究は両方のスパムキャンペーンの共有URLをキャプチャした。
0.56
on based the Cons: Pros and allow profiles Honey identifying such of a attackers, large-scale spam bots, which as large-scale detection of and spam detectors existing the and needs to be platform.
pros and allow profile honey identification such of a attacks, large-scale spam bots, as large-scale detection of the large-scale detections and spam detectors such as existing the and need to be platform. (英語)
0.83
coordinated honey using depending on a
aに依存したハチミツの調整
0.45
tailored large a lead to
tailored~ large (複数形 larges)
0.61
set the campaigns.
キャンペーンをセットしろ
0.65
However, is profiles generic not social media different
しかし、プロフィールはソーシャルメディアとは異なるものではない
0.62
900 analyzed social online The Twitter.
900人がソーシャル・オンラインを分析。
0.67
the user profiles geographic and
ユーザープロフィールは地理的で
0.73
spam profiles al.
スパムプロフィール アル
0.52
attack [102] data
攻撃 データ[102]
0.79
Systems: historical using ML potential authors
システム: mlポテンシャル著者を用いた歴史
0.76
destinations. algorithms, Decision victim fraud and a method
目的地だ アルゴリズム、決定的被害者不正及び方法
0.66
Honeypots 3) posed method a software-defined method based is and attack known ML (BayesNet), potential dict prevent call proposed [84] State and infer a protocol the to validate network real-world million messages in proved experiments to simulate complete execute to and models [72] al.
hofer et design decoys to a deception decoys (複数形 hofer et design decoys)
0.44
The to systems real into
システムに現実を移す
0.72
proNanda et Decoy or in network to train This MLalgorithms.
proNanda et Decoy, or in network to training This MLalgorithms.
0.87
networks connections malicious identify to four wellemployed The Network Bayesian C4.5, including preto Na¨ıve-Bayes and (DT), Table To data.
ネットワークは悪質な身元を4人のベイジアンc4.5に結びつけ、プレト・ナ・シュヴェ=ベイズと(dt)データにテーブルを割り当てる。 訳抜け防止モード: ネットワークは悪質な身元を ベイジアンc4.5に つなげる preto na sıve - bayes and (dt )、table to data を含む。
0.68
the on historical hosts based et al.
on historical hosts based et al. (英語)
0.74
theft attacks, identity Inspection (PRotocol called PRISMA to developed is method This Analysis).
盗難攻撃、身元確認(PRISMAと呼ばれるプロトコールが開発するメソッドは、この分析である)。
0.59
format a of message and machine state a experimented The traffic.
format a of message and machine state a experimented The traffic。
0.79
network authors based three on PRISMA performance of the to 2 10,000 including datasets, traces Their protocols.
states different for malware cyber-physical attributes the discussed with system these develop deception decoys authors integrated more detect harder them make
attacker defender RL-based attacker’s an detection system (NIDS).
攻撃者はRLベースの攻撃者検知システム(NIDS)を使用する。
0.75
The defender hence that nodes.
それゆえ、ディフェンダーはノードです。
0.52
added decoy protocol, a devices, are network recurrent to learn such system a year deception an proposed online decoys network considering to attacker an strategies and tactics while maintaining defender availability and of a while the Partially Observable Markov as an The online uses observed actions on the POMDP embedded This about the the that belief intrusion network observed through the takes actions
trade-off a actions Process algorithm behavior model progress
アクションのトレードオフ プロセスアルゴリズムの動作モデル進捗
0.84
consisting are modeled (POMDP).
構成はモデル(POMDP)である。
0.74
to select using a assumes is
select (複数形 selects)
0.42
security. security The state influences
警備だ 警備 状態 影響
0.57
action Specifically, an dynamically
アクション 具体的には 動的に
0.69
strategy the intelligent deplace changes.
知的な場所を変える戦略を
0.70
This an analyzing strategies work used algorithm deception
このアルゴリズム偽装を用いた分析手法の研究
0.71
deployment
deployment~
0.66
game policy
ゲーム policy
0.82
location resources considered attacker [137] resource,
所在地 資源 考慮 アタッカー[137]リソース。
0.64
the attract Wang al.
Wang al (複数形 Wang als)
0.47
et deception
et deception
0.85
deployment Learning with an
anによるデプロイメント学習
0.80
strategy under uncertainty and a defender’s This training for
不確実性下の戦略とこの訓練の擁護者
0.75
decoy toward optimal an identified for such as honeypots.
ハニーポットのような特定された 最適な動物へのデコイ
0.38
authors developed a Q-learning algorithm for deception for ployment to the network security state as deception resources work an attacker-defender by attacker’s with several Reinforcement that identifies resources.
Stolfo the combining deception well-placed that detector
stolfo the combination deception well-placed that detector
0.73
deof user techdecoy uses
deof user techdecoyの使用状況
0.75
a bait-based attacks
あ bait‐based attack
0.59
Ben Salem and improve to deception features the by using with technique a baiting used highly crafted and deployed and attackers a search user’s behavior.
Ben Salem 氏と deception の改善は,ベイティングが高度に製作され,デプロイされたテクニックを使用して,検索ユーザの振る舞いを攻撃する,という特徴だ。
0.63
and Cons: Although bait-based detection increasing by intrusion the deception, time of the on bait-based interested be attackers, if
ands: 餌ベースの検出は詐欺の侵入によって増加していますが、餌ベースの関心の時間は攻撃者です。 訳抜け防止モード: コンス : 侵入による餌に基づく検出は増大するが, the time of the on bait - based interested be attackers, if
0.80
veloped impersonation profiling behavior work nique.
veloped impersonation profile work nique (複数形 veloped impersonations)
0.49
This bait documents to SVM to model the Pros to gence during the based guarantees attackers may not attract effectively used as intelligent attackers on based bait.
deception contribute collecting intellithere is no performance the deception to more is risk when system vulnerabilities information with an as
deception contribute collect intellithere is no performance the deception to more is risk when system vulnerabilities information with an as
0.85
information alternative, addition,
情報 代替案 加えて
0.62
such fake it may introduce some vulnerability or
そんな 偽物 何らかの脆弱性や
0.58
15 the The increase
15 はあ? increase
0.59
effectiveness which that and and as to authors of
有効性 それと 著者にとって
0.54
which that proposed services fake proved authors approaches, the
その提案は サービス・フェイクは 作家にアプローチし
0.60
Services: defensive to deceive from further
サービス:をさらに欺くための防御
0.84
and real systems et al.
実際のシステムなどです
0.50
[54] approaches To techniques, deception attackers.
[54]接近 テクニックや 詐欺攻撃者などです
0.64
De Gaspari honeypot proactive can increase
デ・ガスパリ・ハニーポットの活性は増加する
0.52
compared to active a more to active by uses system learn the supervisory
active a more to active by use system learn the supervisory と比較して
0.94
attackers with time more effort.
時間のかかる攻撃者。
0.57
The Hindered Attackers tool deception control industrial monitor and to adversary targeting
障害のある攻撃者ツール・デセプション制御による産業モニターと敵対的ターゲティング
0.75
effiFake 5) have of ciency took used been by one step complexity.
effifake 5) 1段階の複雑さが使われています。
0.67
attack adding honeypottraditional The can more defense tool based target’ ‘realistic-looking lure effectively with the identify attackers while providing the subsystem in learning less maintenance Defense Employing Active proposed offis Conpot, an (AHEAD) the allows honeypot the-shelf motives activities of defender acquicontrol data the includes Controller AHEAD systems.
アタック アタックadd honeypot traditional can more defense tool based target’ ‘realistic-looking lure with the identify attacks while provide the subsystem in learn less maintenance defense using active proposed offis conpot, an (ahead) the allow honeypot the-shelf motivations activities of defender acquicontrol data the includes controller ahead systems. (英語)
0.88
(SCADA) sition point single a exposes interface.
(SCADA) sition point single a はインターフェイスを公開する。
0.74
However, it administrator an interact allows to the AHEAD-pots with and interactions of is the AHEAD-pot secure The a channel.
しかし、対話はAHEAD-potsと通信し、AHEAD-pot secure The a channelとの対話を可能にする。
0.66
over them with defense the active implement effectively can component that systems.
その上で アクティブな実装は システムを効果的に構成できます
0.68
production the deployed and is on countermeasures defensive a is modification system fake ML-based used consider POMDP 7] deception unmechanism [5, using attack designed certainty in learning behavior.
運用 デプロイと対策 防御 a is 修正システム 偽mlベース 使用 pomdp 7] 騙しの非機械化 [5] 学習行動における確実に設計された攻撃の使用。
0.74
The a network addresses IP can modify server deception fake that requests forwarding ARP and server, server, DNS DHCP via server.
et requesting back deceive and system features of changes the configurations to an preferences attacker after the attacker’s and its learning behavior from attack data.
of detection the detection false high from suffer mechanisms in positives and intrusion as user practice, if fake a normal is treated an services are provided to the user, it hinders normal availability users.
dataset the This with can hide sensitive about the properties of individual of of properties samples samples.
データセット this with は、各プロパティサンプルの個々のプロパティに敏感な情報を隠せる。
0.68
group a or Pros and mechanisms obfuscation data can Existing datasets.
group a または Pros と mechanism obfuscation データは、既存のデータセットを格納できる。
0.62
However, training in privacy effectively the although models have been increasingly in used effecthe validate use their and privacy data to of tiveness obfuscation techniques in privacy and security has addressed.
attacks. detectable ordinary if fake users system.
攻撃だ 通常のifフェイクユーザーシステムを検出する。
0.65
the in we IV, Table techniques, deception and countermeasured, based defensive deception
inwe iv, テーブル技術, 騙し, 対策, 防御的騙し
0.52
summarized categories, application
要約されたカテゴリー、応用
0.56
aspects the five expected domain)
側面 期待される5つの領域
0.56
key effects, a of surveyed in (i.e., attacks given MLthis work.
鍵となる効果は (すなわち、MLthisが機能する攻撃)。
0.55
techniques VI. ATTACKS COUNTERMEASURED
技法 VI。 アタックカウンタリング
0.62
BY DEFENSIVE defen-
防御によって デフェン
0.41
existing services, DECEPTION TECHNIQUES attacks countered by have been follows: techniques as 95, 45, 93, 20, [5, 30, attacks reconnaissance) obtain aim to a may attacker An outside identify vulnerable system information and attack This system.
target the into penetrate APT chain of part as the cyber kill in considered In the literature, the scanning attacks are categorized as types follows: monitoring nodes
as two – Leveraging 142]: 95, [30, attacks Passive attackers (e g , switches), or routers compromised and ananodes the traffics passing through can scan Passive to gather information about hosts.
lyze packets nodes’ active the can make achieve attackers monitoring up-time, roles, protosupporting discovery, OS, configuration [98].
lyze packetsノードのactive theは、アップタイム、ロール、プロトサポートディスカバリ、os、コンフィギュレーション[98]を監視する攻撃者を実現する。 訳抜け防止モード: lyze packets nodes ’ active the can make achieve attacks monitoring up - time, 役割、プロトサポートディスカバリ、os、構成 [98 ]。
0.72
However, passive IP network cols, and that do not run identify cannot on monitoring or ports protocolwithout are well-known [22].
しかし、パッシブipネットワークのcolは、モニタリングやポートプロトコルを使わずにidが実行できないことはよく知られています [22]。 訳抜け防止モード: しかし 受動的ipネットワークの cols は do not run identity can not on monitoring or ports protocolwithout 良く知られている(22)。
0.74
decoders specific 122]: Through 45, 20, [5, probing attacks Active target, ata to packets probing sending includes OS, the machine’s obtain can tacker version.
decoders specific 122]: 45, 20, [5, probing attack Active target, ata to packets probing send include OS, the machine's obtained can tacker version.
0.78
Although application installed and ports, opened more collect to attackers the allow active probing can detected to easy it system configurations, relatively be is technologies, defensive by such as IDS [22].
network a analyze To [114]: target can attacker an node, target use network features specific of a protocol or an OS running include tools fingerprint deception Some and honeypots,
ネットワーク a を [114] に分析する: ターゲットはノードを攻撃でき、プロトコルや実行中の os 特有のネットワーク機能を利用することができる。 訳抜け防止モード: network a analyzeTo [114 ] : ターゲットがノードを攻撃できる。 ターゲットの使用 プロトコルや実行中のOSに特有のネットワーク機能には、ツールの指紋偽装などがある。
0.84
fingerprinting ideal an for to tools identify as such a machine.
フィンガープリントの理想は 道具がそのような機械だと識別することです
0.67
[150], P0f such as addressing
[150],アドレッシングなどのP0f
0.83
Network and search fingerprint a or device, network remote on a Common Nmap [91], and techniques, deceptive focuses on kind (Distributed) Denial-of-Service legitimate are mainly can services.
ネットワークおよび検索指紋 a またはデバイス,コモンNmap [91] 上のネットワークリモート,および型(分散)サービス拒否の偽装技術は,主にサービスである。
0.70
to to common munications.
共通のミューニケーションに
0.41
[18]. flows attacks.
[18]. 流れの攻撃
0.68
of [40, (DoS) denied be users flood overwhelm or disrupt normal functions ping is attack DoS
40, (DoS)は、ユーザが浸水したり、通常の機能を妨害したりすることを否定する
0.68
attacks from proper flow network or comby flooding
適切な流れ網またはコンビーフラッディングによる攻撃
0.77
to make This attack targeted machine
この攻撃対象のマシンを
0.74
93, 121, potential information,
93, 121, 潜在的な情報
0.90
services misdirected
service-directed
0.74
Xprobe network
Xprobe ネットワーク
0.83
traditional 55]: DoS
伝統 55]:DoS
0.69
this the A –
これ はあ? A –
0.69
a • • • • •
あ • • • • •
0.79
• • • • • •
• • • • • •
0.85
APT attack attacks control
APT 攻撃 攻撃 コントロール
0.79
messages mostly stage.
メッセージ ほとんどがステージです
0.75
130, 144, (spam),
130,144,(spam)
0.62
privacy threats is
プライバシーの脅威は
0.73
while deception against network.
騙されながら ネットワーク
0.46
popularly [125, performing kill cyber defensive
一般に[125, キルサイバー防衛を行う
0.70
different chain (CKC) deception
different chain (複数形 different chains)
0.69
remotely continuously block
リモートでブロックする
0.62
environments, be can from users a packets to bandwidth or
パケットから帯域幅まで、あるいは、ユーザから得ることができる環境
0.74
leveraging ICMP (ping) packets In distributed ing attacks legitimate flooding network CPU, memory or attackers can botnet its can to a target to the [84]: Malware Malware troduce some damage to a or client, have been Privacy information defensive to defend Advanced persistent 124]: An attack attack of the theoretic APT but reconnaissance Spamming [88, 89, unsolicited phishing messages or fake Malicious create can attackers own achieve their information, such employment birth, Fake likers malicious achieve ing [136].
leveraging ICMP (ping) packets In distributed ing attacks legitimate flooding network CPU, memory or attackers can botnet its can to a target to the [84]: Malware Malware troduce some damage to a or client, have been Privacy information defensive to defend Advanced persistent 124]: An attack attack of the theoretic APT but reconnaissance Spamming [88, 89, unsolicited phishing messages or fake Malicious create can attackers own achieve their information, such employment birth, Fake likers malicious achieve ing [136].
0.83
aimed to spread fake Loss [37, can a the with authorization (e g , attacks confidential of and availability.
偽の損失を広めるために[37]、the withの認可(例えば、機密と可用性への攻撃)が可能です。
0.71
Impersonation attacks ade legitimate user’s system component attack Jamming seen be as a that jamming wireless in The archive.
By keeping also named jammer, tion on a wireless performance cause
名前は「jamer」で ワイヤレスの パフォーマンスを犠牲にしてます
0.51
confidentiality, of An 51]: insider 50, confidential leak out Further, legitimate user.
秘密性、An 51]:インサイダー50、秘密漏洩、さらに正当なユーザー。
0.59
of a access, illegal information)
アクセスについて)違法な情報
0.73
by employers, the malicious a selfish as date,
悪質な雇用主や デートのように利己的だ
0.52
[60] large [115].
大きい[60]. [115].
0.70
profiles networks while
プロフィール ネットワークは
0.67
networks. systems
ネットワーク。 システム
0.73
all is a attacks): identities
すべて は あ 攻撃:身元
0.60
(a.k.a. number based physical
(a.k.a.) 数ベース物理
0.56
Sybil fake of on others’ addresses,
Sybilは他人の住所を偽造する。
0.64
OSN to personal date of
OSN (複数形 OSNs)
0.59
attackers, photos. [21]: Human disseminate
攻撃者 写真だ 〔21〕人散布
0.61
goal e-mail, or by paid crowdturfing information false to can purposes via crowdsourcemployers’ This mostly and called crowdturfing information to mislead people’s beliefs.
メールをゴールにするか、あるいはクラウドソース・プルーパーズ(クラウドソース・プルーパーズ)を通じて、偽情報を偽造するかで、クラウドソーシングの情報を主に呼び出して人々の信念を誤解させる。 訳抜け防止モード: goal e - mail, or by paid crowdturfing information false to can purpose through crowdsourcemployers& quot; これは主に、人々の信念を誤解させるために、クラウドサーフィン情報と呼ばれる。
0.67
(CIA) availability and integrity, [120], a called attacker, traitor as to information the status legitimate its by using it device, target perform can transformation modification or integrity loss to lead that
attacks. on focus DoS attacks attack is packets, effectively disrupt even and
攻撃だ 集中DoS攻撃はパケットであり、効果的に破壊する。
0.72
jamming The incurring can be relatively jamming a block the the normal damage
ジャミング インカリングはブロックが通常の損傷を比較的妨害する可能性がある
0.73
can attack is difference traffics in applicable simple to attacker, communicaoperation, control the
can攻撃は、攻撃者、コミュニカ操作、制御に適用されるトラフィックの違いである。
0.58
英語(論文から抽出)
日本語訳
スコア
• • system [66].
• • システム [66]
0.78
device Node or 65, 63, 58, 73, 87, research does not Some authors only use The research attack.
device Node, 65, 63, 58, 73, 87, research does not 一部の著者は研究攻撃のみを使用する。
0.84
Some [2, a target attacking before 141] 135, 100, 87, 111, 99, 24, actions attacking [23, 30, attacker [61]: An Web attack bilities applications to in web the web access unauthorized 3
いくつかの[2, a target attacking before 141] 135, 100, 87, 111, 99, 24] アクション攻撃 [23, 30] アタッカー [61]: Web で Web アクセスを許可されていない Web アクセスに Web 攻撃能力を持つアプリケーション。
0.87
[2, 3, 12, 13, 15, 14, compromise 81, 99, 100, 104, 111, 106, attack of details the specify “device attacker an discusses that 13, 14, 15, 3, 12, only others while 106].
[2, 3, 12, 13, 15, 15 14 compromise 81, 99, 100, 104, 111, 106, attack of details the specific [device attacker an discuss that 13, 14, 15, 3, 12, only other while 106]
0.80
73, 58, 104, existing can leverage gather data servers.
73, 58, 104, 既存のデータサーバを活用できる。
0.73
sensitive to 24, 23, 30, 141]: 135, process.
敏感 へ 24, 23, 30, 141]: 135, process.
0.72
an probe can 63, 65, 81, the discuss
63,65,81の探査機が
0.44
vulneraand gain
vulneraandゲイン
0.72
compromising” to represent
compromising (複数形 compromisings)
0.53
1 1 2 3 1 1
1 1 2 3 1 1
0.85
6 compromise or Reconnaissance fake
6 妥協または偵察 偽物
0.71
capture or Node Scanning APT or profile Malicious fingerprinting Network of Loss CIA or DDoS DoS Privacy attack Web attack Jamming
捕らえるか Node Scanning APT or profile Malicious fingerprinting Network of Loss CIA or DDoS DoS Privacy attack Web attack Jamming
3. learning In Types and frequency of attacks defensive deception approaches.
3.学習 攻撃のタイプと頻度は防御的詐欺に近づく。
0.71
of gameFigs.
GameFigsの略。
0.66
2 and 3, we summarized techniques defensive or ML-based theoretic type that paper.
2および3では, 防御的, MLに基づく理論的手法を要約した。
0.55
As handled of attacks the majority of game-theoretic DD techniques shown in Fig considered capture scanning or compromise illustrated as attack (or the spamming techniques DD in attacks profile or most ML-based honeypots.
approaches used to and As considered most as attacks in
アプローチは そして最も攻撃と見なされるように
0.54
reconnaissance) Fig.
偵察) フィギュア。
0.38
ML-based malicious/fake
mlベースの悪意/フェイク
0.35
the deception discussed most second most.
詐欺が議論された 2番目に
0.43
number (DD) in this
DD (複数形 DDs)
0.62
each 2, node are mainly
ノードが2つずつ 主に
0.62
detect 3, VII.
検出 3, VII。
0.78
APPLICATION DOMAINS
アプリケーションドメイン
0.47
FOR DEFENSIVE DECEPTION
ディフェンス・デセプションのために
0.25
In this ception
院 このインセプションは
0.49
section, techniques we have
第1節 技術 我々は
0.62
TECHNIQUES provide how studied been existing in
技術は研究の成果を 存在する
0.61
defensive denetwork
防御 デネットワーク
0.66
different environments characteristics ing defensive ML-based experiment
違う 環境特性を用いた防御ml実験
0.69
platforms. or of each deception approaches, testbeds
プラットフォーム 偽りのアプローチ テストベッド
0.36
used. To network techniques attacks
使った 攻撃をネットワーク化する
0.70
be specific, environment using considered,
特定の、考慮された環境
0.75
we and game-theoretic metrics and
私たちとゲーム理論の指標と
0.55
described the correspondor and 17 A.
特派員の話と 17 A。
0.66
Enterprise An
エンタープライズアン
0.56
enterprise mogeneously ration [79].
企業 均質なレーション[79].
0.69
its attack system without strategies
戦略のない攻撃システムは
0.89
to Networks network configured Hence, an successfully
へ ネットワークネットワーク構成 Hence, 成功
0.66
a is to be attacker and system common operated in easily can accordingly difficulty
aは攻撃者であり 操作が容易なシステムでは難易度が高い
0.66
that static a and plan penetrate but using
静的なaとプランは 浸透しますが
0.53
is hoconfiguperform into the dynamic
hoconfiguperformは動的に
0.61
experiencing high 3) 1)
高い経験を 3) 1)
0.78
game types, defeat [104, In
ゲーム 種類 敗北 〔104,院〕
0.69
the (GT)
GT (複数形 GTs)
0.52
(DD) various 119, [40,
(DD) 様々な119, [40,
0.85
such Game considered DD Techniques: this
そのようなゲームは DD技術:これ
0.69
following or MLad140], security
MLad140],セキュリティ
0.45
strategies. common defensive deception include files
戦略だ 一般的な防御策にはファイルが含まれます
0.55
sophisticated [139, attacks using attacker attack [40].
高度な[139, アタックアタック[40]による攻撃。
0.75
game-theoretic environment, [156]
ゲーム理論環境,[156]
0.70
defense The environment network in used techniques as such honey fake information, honey of types 156].
ハニーフェイク情報、タイプ156のハニーのような使用技術で環境ネットワークを防御します。
0.57
106, 111, honeypots or 139] enterprise networks, Attacks: Main 2) game-theoretic countered by been have attacks threat and insider including based DD, [73], zero-day APTs versaries, such as engineering reverse worm attacks [32], [19], or DoS Spafford patch Avery and DD For Methods: ML GT and Key signalnetwork this in deployed techniques have Stackelberg 106] games ing or [40, 104, as game Some commonly been used.
106, 111, honeypots or 139] enterprise network, Attacks: Main 2) game-theoretic countered by were have attack threat and insider including base DD, [73], zero-day APTs versaries, such as engineering reverse worm attack [32], [19], or DoS Spafford patch Avery and DD For Methods: ML GT and Key signalnetwork this in deployment techniques have Stackelberg 106] games ing or [40, 104, as game ] ゲームとしてよく使われている。
0.88
different usBayesian or [111] Utility Metagames/Expected to also Bayesian have [40] ing been MLcontext.
異なる usBayesian または [111] Utility Metagames/Expected to Bayesian have [40] ing は MLcontext です。
0.92
For in DD develop this network (NLP) Processing Language DD based Natural files.
DDでは、このネットワーク(NLP)処理言語DDベースのNaturalファイルを開発する。
0.82
honey develop to used have techniques been DD apMajority of game-theoretic Pros providproaches has enterprise network without the aim of examining ing the details with solid theoretical proposed a solutions strategies or analysis, gamehighly based theoretical concrete theoretic DD approaches may provide on how to design DD techniques considering the characteristics of a availability, given system security and performance/services requirements, or netaddition, some general work specify particular game-theoretic DD modeling idea techniques, a of but limited details, technique.
honey develop to used have techniques been DD apMajority of game-theoretic Pros providproaches has enterprise network without the aim of examining ing the details with solid theoretical proposed a solutions strategies or analysis, gamehighly based theoretical concrete theoretic DD approaches may provide on how to design DD techniques considering the characteristics of a availability, given system security and performance/services requirements, or netaddition, some general work specify particular game-theoretic DD modeling idea techniques, a of but limited details, technique.
0.91
DD showing networks applicability in enterprise are highly complex systems which may need mostly deal with to a gamewide range of networks, theoretic don’t they types of attacks.
tion software-defined (IoT), of Things systems control dustrial in networks these to particularly discuss for designed ‘general platform.
tion software-defined (iot) of things systems control dustrial in networks これらは特に‘general platform’として設計されている。
0.77
DD have seems in honeypots
DDはハニーポットに見えます
0.66
is CPS presence the and their networks, (SDNs), discuss include this techniques a
CPSの存在とそのネットワーク(SDN)は、このテクニックを議論している。
0.74
Techniques: deployed been limited not environments.
テクニック: デプロイは環境に制限はない。
0.75
We any applied are the CPS uncertainty confusion or attack
我々はcpsの不確実性の混乱や攻撃を
0.53
techapplirather information found for environments introthem to luring 81, 121].
techapplirather information found for environments introthem introthem introthem to luring 81, 121]
0.78
DD ML-based techcompronode [121], or APT
DD ML-based techcompronode [121] または APT
0.97
game-theoretic mainly reconnaissance
ゲーム理論は主に偵察
0.46
theory using honeypots also real, on
ハニーポットを使った理論も現実です
0.66
in [81]. (Recurrent of and and techniques
81年です (再発・技法)
0.39
2) niques mise attacks 3) was DD is to like studied based RNN [72].
2) Niques mise attack 3) was DD is like to study based RNN [72]。
0.73
observations network Pros developing environment in DD developed diverse CPS unique its for CPS cyber and characteristics, itself.
DDにおけるProsの開発環境は、CPSサイバーと特性に特有の多様なCPSを開発した。
0.70
environment physical between differences Hence, DD techniques.
環境 物理的に違いがあるため、DD技術。
0.63
the recommended In when such honeypot deployment and maintenance often come with higher deployment
そのようなハニーポットの展開とメンテナンスがしばしば高い展開をもたらすときの推奨
0.66
signaling A Methods: and ML optimal an to defender identify select to addition, In [121].
signaling A Methods: and ML optimal an to defender identify select to addition, In[121]。
0.76
how attackers to uncertainty or confusion To that devices create decoy look used also was Networks) Neural in year for behaviors device a a CPS a CPS a Since is popular Cons: commonly used in real systems, can high have CPS for the DD techniques contexts.
攻撃者が不確実性や混乱への方法 デバイスがデコイの外観を作るのに、ネットワークも使われた) 振る舞いデバイスに対して神経性のあるCPS a CPS A Since is popular Cons: 現実のシステムで一般的に使用されるCPSはDDテクニックのコンテキストに対して高いCPSを持つことができる。
0.70
However, about much really didn’t consider such both as the of features having of challenges and the much really observe network’s enterprise the honeypots are sometimes attackers.
2) niques web attacks 3) plete, defense rithms 4) posed based privacy defend However, we examples.
2) niques web attacks 3) plete, defense rithms 4) posed based privacy defend。 訳抜け防止モード: 2 ) niques web attacks 3 ) plete, defense rithms 4 ) posed based privacy defend しかし、 例を挙げる。
0.78
features of a given DD technique only for environment.
特定のDD技術の特徴は環境のみである。
0.76
DD techgeneral considered have mainly [105], or privacy attacks [152].
DDの技術者は、主に[105]、またはプライバシー攻撃(152]とみなした。
0.70
classifiers of ML-based accuracy comgames with Signaling and ML Methods: attackbeen have information to model used addition, ML-based In [61, 152].
Signaling and ML Methods: attackbeenは、MLベースのIn[61, 152]をモデル化するための情報を持っている。
0.68
algo[152]. used data obfuscation generate in proapproaches game-theoretic Cons: 105], MLgame-theoretic DD framework [61, as it to aims ML adversarial concrete design cloud computing
アルゴ[152] proapproaches game-theoretic cons: 105], mlgame-theoretic dd framework [61, it to aim to ml adversarial concrete design クラウドコンピューティング 訳抜け防止モード: アルゴ[152] proapproaches game -theoretic cons : 105 ]で生成されたデータ難読化 mlgame - theoretic dd framework [61] - mlの敵対的具体的設計を目標とするクラウドコンピューティング
0.55
unique fairly deal to with observe really the
観察者にとって ユニークなのは
0.62
technique is attacks don’t
テクニックは攻撃はしない
0.69
105, to While D.
105~105年 d.
0.66
recognized effective for (IoBT)
IoBT (複数形 IoBTs)
0.45
of Internet network IoT been have to provide specialized Things or large embraces a sensor as wireless or smart (MANETs), intelligence and other as considered main a [11].
or APT attacks [87, incomgames with Bayesian Key GT and ML Methods: 3) and meta information player a are games plete for considered of type is a unsure of who [87].
またはAPT攻撃 [87, incomgames with Bayesian Key GT and ML Methods: 3) and meta information player a are plete for consider of type [87] is a unsure of who [87]。
0.80
A signaling attackers game is considered with a perfect Bayesian equilibrium to model also and attacker an between interactions IoTs the defender where IoBTs to referred is battlefields in games 141] 23, 13, in [14, 15, 12, 99, introduced fake nodes mimSince honeypots are and Cons: Pros honeypot won’t adding a regular node, a behavior of icking the of interface or network change the the hierarchy of the technique IoT is honeypot the IoT domain.
シグナリングアタッカーズゲーム(signaling attacks game)は、モデリングのための完全なベイズ的均衡とアタック an インタラクション iots ディフェンダー iobts がゲーム内のバトルフィールド 141] 23 13 in [14, 15, 12, 99, introduced fake node mim since honeypots are and cons: pros honeypot's not addition a regular node, a behavior of the imcking the interface or network change iot テクニックの階層構造は iot ドメインハニーポット(honeypot the iot domain)である。
0.69
the only However, for ML-based data naturally of amount DD real-like decoys enhance detecting
しかし、ML ベースのデータに対して DD real-like deoys は検出を強化します。
0.64
IoT game-theoretic A to applied this large a generate create techniques which can outside and attackers.
IoTゲーム理論Aを適用することで、外部とアタッカーに可能なテクニックを生成することができる。
0.62
gateways. technique can
ゲートウェイ。 技術は
0.63
[40]. deception
[40]. deception
0.76
inside or 4)
内部 あるいは 4)
0.77
E. Software-Defined Networks The separates packet ing API
e. パケットing apiを分離するソフトウェア定義ネットワーク
0.75
(SDNs) SDN data forwarding) from control-plane [92].
(SDN) コントロールプレーンからのSDNデータ転送 [92]。
0.73
The network OpenFlow and switches
ネットワーク OpenFlowとスイッチ
0.68
decisions) between paradigm
意思決定) パラダイム
0.50
plane processing [29] logically
平面処理[29]論理的に
0.82
processing (e g , (e g , routacts as an centralized
Reinforcement Learning, SVM game Signaling theory, RNN
強化学習, SVMゲームシグナリング理論, RNN
0.84
Pros Cons approaches
プロ コン アプローチ
0.57
are the Since don’t they generic, too of details the provide DD techniques or specific considered to be attacks network under specific environments or real systems.
for DD techniques the reflect CPS do really not challenges unique of the environments.
DDテクニックでは、リフレクションCPSは環境に固有の課題を提起しません。
0.70
CPS honeypot Physical deployment and maintenance often come with higher deployment and management cost.
CPS ハニーポット 物理的配置とメンテナンスは、しばしばより高い配置と管理コストをもたらす。
0.62
designs Some detailed should be considered to unique deal with challenges of cloud
クラウドの課題に独特な対処法として考慮すべき詳細設計
0.76
environments. the honeypot only applied
環境。 はあ? ハニーポットは
0.49
A game-theoretic is technique that technique domain.
ゲーム理論は、その技法領域である。
0.55
this to the However, IoT a can generate naturally large for data of amount ML-based DD techniques decoys which or real that inside enhance and attackers.
outside existing Most single a use which controller, a single point of
既存のsingle a useの他には、single point of controllerがある。
0.63
create can looks like detect
createは「検出」のように見える
0.53
Most approaches enterprise environment
企業環境へのアプローチ
0.75
DD game-theoretic assume an network by general idea a proposing deception, defensive of be which can used as guidelines general to being tied characteristics of environments.
Honeypots Techniques: DD game-theoretic in strategy defense taking for 93] dynamic, work [45, Main Attacks: 2) scanning or clude intelligence and addresses (e g , information, Key GT popularly
Honeypots Techniques: DD game-theoretic in Strategy Defense Take for 93] dynamic, work [45, Main Attacks: 2) scan or clude intelligence and address (e.g. information, Key GT popularly)
0.92
reconnaissance target towards a port IP numbers) network mapping, and Methods: and ML under adopted various incomplete information, equilibrium.
[55], munication capture network packets control and systems information protect and other systems compromised from potentially to is deception Defensive transmit used jamming over fake mitigate to channels [101].
networks Game Attacks: Main 2) defended have niques jamming against attacks core networks tihop wireless 3G and network compromise servers or gateways that support the mobile packet in services radio general A non-cooperative, non-zeroKey GT and ML Methods: interactions an to model the routing [55].
ネットワーク攻撃: メイン2 防衛対象は、無線3Gとネットワーク妥協サーバ、あるいはサービスラジオのモバイルパケットをサポートするゲートウェイに対して、攻撃を妨害するニケを犯している 一般 非協力的で、非ゼロキーのGTおよびMLメソッド: ルーティングをモデル化するための相互作用 [55]。 訳抜け防止モード: ネットワークゲームアタック : main 2 ) defended have niques jamming against attack network tihop wireless 3g and network compromise server or gateways that support the mobile packet in services radio general a non- cooperative, non-zerokey gt そして、mlメソッド:ルーティングをモデル化するためのインタラクション [55 ]。
0.84
Deceptive also game game using based transmission on defender wireless against
ディフェンダー無線による対局送信を利用した欺きゲーム
0.60
proposed is flow in multihop packets address moarchitecture to developed was [55] telecomof mobile network designed was gateway to investigate as as well launched from attacks the inside honeynet.
提案するis flow in multihop packets address moarchitecture to developed was [55] telecomof mobile network designed was gateway to investigation, and launch from attack the inside honeynet
0.79
information fake attacks in wireless
無線における情報偽装攻撃
0.74
techDD or ML-based in [49] mulwhich attacks nodes providing [55].
techDDまたはMLベースの [49] mul whichは[55]を提供するノードを攻撃します。
0.64
networks between paths are Stackelberg allocation networks
ネットワーク 経路間の経路はstackelbergアロケーションネットワークである
0.67
two-stage power to
two‐stage power
0.88
theoretic 3) is used defender on
理論 3) ディフェンダーが使われています
0.58
sum static game and attacker a designed based a theory [49].
サム・スタティックゲームとアタッカーは 理論に基づく設計です [49]
0.69
Deceptive is game applied theory attacks jamming [101].
認知はゲーム適用理論によるジャミング[101]攻撃である。
0.71
and 4) Pros Cons: key concerns of wireless nications real However,
4) 長所: ワイヤレスのニシエーションに関する重要な懸念は、しかし、
0.69
systems based in like or mobile wireless given if
システムベースで モバイル・ワイヤレスなら
0.51
on [55], design such are
on [55], デザインは
0.62
deal with Specific communetworks, security, implement game-theoretic DD technologies.
特定のコミュートワーク、セキュリティ、ゲーム理論DD技術の実装を扱う。
0.64
heavily honeynet a
ヘビーハニーネットA
0.50
features to as multihop helpful to
マルチホップとして役立つ機能
0.77
architecture depends mulated of
建築 混じり合うことによる
0.63
upon game effectiveness For ML-based we
MLに基づくゲームの有効性について
0.61
or domains, Table V.
またはドメイン、テーブルv。
0.76
the the accuracy framework under convenience
はあ? 便宜上の正確さの枠組み
0.51
of may different easy of
それぞれが違うかもしれない
0.49
DD summarized techniques our
DD 要約 我々の技術は
0.63
the same the honeypots,
同じです はあ? ハニーポット
0.44
deployed not guarantee deployment settings.
デプロイ設定が保証されない。
0.59
for look-up different on this
ルックアップでこれと違うのは
0.50
based discussions of
ベースの議論 ですから
0.58
game-theoretic application section in
ゲーム理論の適用セクション
0.69
20 forlevel
20 forlevel
0.85
VIII. EVALUATION OF DEFENSIVE DECEPTION
VIII。 評価 防御的デセプションの
0.50
In TECHNIQUES: METRICS section, we survey what
院 テクニケエズ:メトリクス部門、我々は何について調査する
0.49
AND TESTBEDS types of metrics are
そしてTESTBEDSタイプのメトリクスは
0.71
this to effectiveness and efficiency of defensive deception testbeds In employed of
これ 使用した防犯偽証検査の有効性及び効率
0.69
address what effectiveness
どんな効果に対処するか
0.35
of efficiency types and used
効率が良く 種類 使用
0.62
addition, evaluate to (DD)
付加、評価する(dd)
0.60
we the techniques. measure the techniques.
技術です テクニックを計測する。
0.53
are defensive deception
防御的です deception
0.76
is et A. [1]
は など A。 [1]
0.73
32, accuracy
32, accuracy
0.85
the Curve)
Curve (複数形 Curves)
0.53
and Pawlick
そしてPawlick
0.66
social against 144] in [60, 107] evaluated
評価された[60, 107]144]の社会
0.83
following metrics defensive 24, 23, is often
測定基準24,23に従うと
0.50
Metrics to measure are used the literature, In the effectiveness techniques: deception of the existing 88, 60, 45, 27, 89, [1, 21, accuracy Detection • This 106, the by measured AUC 107, 143, 144]: of ROC (Receiver Operating Char(Area Under the acteristic).
既存の88, 60, 45, 27, 89, [1, 21, 21, 精度検出 • この106, 測定値 AUC 107, 143, 144]: of ROC (Receiver Operating Char(Area under the acteristic))。 訳抜け防止モード: 測定基準は文献で, 有効性手法で用いられる : 既存の88点を欺く 60,45,27,89,[1,21]精度検出•この106。 測定した auc 107, 143, 144 ] : roc ( receiver operating char(area under the acteristic ) について。
0.74
AUC is used to measure accuracy of detection showing TPR (True Positive Rate) by as FPR (False Positive classifier et increases.
et online based deception [106, on their the including different metrics, detector developed by adversary discover to deception.
et online based deception [106, on their the including different metrics, detector developed by adversary discover to deception] (英語)
0.83
the 23]: [24, Mean attacks detect time also measured detection mechanism is a deception can capture [14, 15, 13, 12, 37, 49, 65, 73, 75, 81, 96, 97, 99, 101, Utility 137, 100, 155]: 106, (either an attacker In game-theoretic DD techniques, a player defender)’s one considered payoff) a or is as metrics to key of deception game the between Commonly, and defender.
23] [24, Mean attack detection time also measured detection mechanism is a deception can capture [14, 15, 13, 12, 37, 49, 65, 73, 75, 81, 96, 97, 101, 99, 101, Utility 137, 100, 155]: 106, (a game-theoretic DD technique, a player defender)'s one considered payoff) a or is as key of deception game the between Commonly, and defender.
0.79
taking of utility attacker a the strategy deception on based formulated defensive the and the cost confusion attacker.
ユーティリティアタッカーの奪取 戦略の偽装 定式化された防御とコスト混乱アタッカーに基づく。
0.74
an increased deployment to model games signaling the an between Some interactions a benign client and a defender.
As attacker, some of considered the impact studies another cost these technology expected deception of common metric system’s utility a is shown as objective, DD [5, in 7, techniques 107, 133, 132, 111, 122, of Probabilities an 51, 114, 99, 135]: An attacker’s ceeding
攻撃者としては、これらの技術が一般的なメートル法システムのユーティリティaを欺くと期待されている別のコストが挙げられている: dd [5, in 7, techniques 107, 133, 132, 111, 122, of probabilities an 51, 114, 99, 135]: 攻撃者の身代金。
0.81
[114, to game-theoretic in 75, 73, 85, 81, 65, 155].
[114, to game-theoretic in 75, 73, 85, 81, 65, 155]
0.85
141, 153, attacker taking
141,153,攻撃者が
0.86
137]. A be maximized or 96,
137]. 最大化(96)
0.56
certain (i.e., a metric
特定の(すなわち、計量)
0.79
[30, 50, in proto measure
[30, 50, in proto measure]
0.89
as ML-based 106, 100,
MLベースの106,100,
0.82
The by attacker. effectiveness how early mechanism accuracy
攻撃者。 有効性は 機構の精度
0.62
defender’s the
defender (複数形 defenders)
0.58
utility (or evaluate
有用性(または評価)
0.53
actions choices) actions as
行動の選択) 行動として
0.67
to normal as considered of their
普通に 考慮 彼らの
0.65
technique attacks result,
技法 攻撃 結果として
0.69
153, 133, 122,
153, 133, 122,
0.85
107, 141, 132,
107, 141, 132,
0.85
114, 111, also
114, 111, また
0.80
the are to is •
はあ? は へ は •
0.65
• a a •
• あ あ •
0.68
英語(論文から抽出)
日本語訳
スコア
defensive the deception following
防御! deception (複数形 deceptions)
0.44
honeypots). effectiveness of of an example, in [135], attacker action are considered: attacker a failure command, an of strategy, alternative an game.
role of found DD be example can techniques can common scanning time reconnaissance or an attacker’s easily increase targets by increasing the attacker’s vulnerable to identify an crack required Increasing [122].
find dd beの例 この技術は、一般的な走査時間偵察や攻撃者が簡単にターゲットを増やせるために、攻撃者の脆弱さを高め、[122]の増加を必要とするクラックを特定する。 訳抜け防止モード: found DD be example can can can can common scan time reconnaissance あるいは攻撃者が攻撃者の脆弱さを増すことで、容易に標的を増やすこともできる。 必要なひび割れを識別する 122]の増加。
0.76
confusion to time the 42], is obfuscated code evaluation metric the adopted in [35, [31].
42の混乱は][35,[31]で採用されているコードの難読化評価基準です。
0.64
process deobfuscation of complexity the as well the as [4] in tool The HackIt deception successfully increased the attacker’s An system.
exploit to hackers by time a taken significance time detection deception is of great to evaluate [24].
24] 時間的重要度を判断したハッカーへのエクスプロイトは,[24] 評価に非常に適しています。
0.58
cyberdeception of the as effectiveness in [19, automated of 124]: This evaluates cost 20, the Runtime and Spafford Avery techniques.
19, automated of 124]: これはコスト20を評価し、ランタイムとspafford averyテクニックを評価する。 訳抜け防止モード: 19][自動化124]における効果としてのサイバー詐欺 これにより、コスト20、RuntimeおよびSpafford Averyのテクニックが評価される。
0.66
obfuscation deception and evaluated and Wallrabenstein Avery [19] the perand [20] deception technique patches developed fake the formance of learning time Similarly, metric.
Wallrabenstein Avery [19] the perand [20] deception Technique patch developed fake the formance of learning time, metric。
0.52
runtime based this the on the is the metric used to evaluate the learning attacker’s [124].
ランタイムベースのこれは、学習アタッカーの[124]を評価するために使用されるメトリックである。
0.80
in introduced data from attack behavior model
攻撃行動モデルからのデータの導入
0.82
and we summarized measuring performance this work.
この作品のパフォーマンスを まとめてみました
0.46
in surveyed the most common metric game-theoretic DD
In surveyed the most common metric game-theoretic DD
0.94
the and As
The and As
0.78
5, In Figs. 4 of metrics techniques is utility player’s surveyed the for used in hand, other Fig.
5, フィギュア。 4.4のメトリクステクニックは、ユーティリティプレーヤが手作業で使用する for や他の Fig について調査したものだ。
0.56
on accuracy detection FPR metrics.
精度検出fpr指標について
0.63
such metrics frequency types and of security the DD Fig.
このような指標は 周波数タイプとセキュリティはdd figである。
0.56
in a 4, shown all metrics among the techniques.
図4では、テクニック内のすべてのメトリクスを示します。
0.63
On heavily relied and TPR,
信頼度とTPRについて
0.56
AUC, as 5 2
AUC として 5 2
0.68
23 5, ML-based DD approaches
23 5 MLベースのDDアプローチ
0.82
using 5 6 accuracy
利用 5 6 accuracy
0.82
Detection Utility Probabilities Round Runtime
Detection Utility Probabilities Round Runtime
0.85
of trip-time of
trip + time
0.57
automated DD attacker actions
自動DD 攻撃者 行動
0.71
Fig. of
フィギュア。 ですから
0.48
4. and game-theoretic Types
4.ゲーム理論 種類
0.71
frequency defensive of metrics measuring deception techniques.
of testbeds exthe surveyed techniques probability-based, testbed-based.
テストベッドは確率ベース、テストベッドベースである。
0.55
We general discuss Testbeds Evaluation we this In theoretic game isting terms in in this work simulation-based, emulation-based, and the each discuss testbeds evaluation of observed trends survey.
simulate [114] et traffic, Rahman benign network using Nmap [53], Internet Traffic Archive network flow by the their to technology.
114] et traffic, rahman benign network using nmap [53], internet traffic archive network flow by their to technology (英語) 訳抜け防止モード: Nmap [ 53 ] を使って、[114 ] などのトラフィックをシミュレートする。 Internet Traffic Archive Network Flow by the their to technology (英語)
0.75
45] to their simulate deception combine it deception their proposed work.
45]シミュレート・デセプションにより,提案手法を合成した。
0.60
system and network used [132] al.
132]alを用いたシステムおよびネットワーク。
0.83
Thakoor a 109] the CyberVan [41, et as cyberdegame-theoreti c simulate to simulation testbed et Amin ception and techniques.
thakoor a 109]cybervan [41, et as cyberdegame-theoreti c simulation to simulation testbed et amin ception and techniques.(英語)
0.88
Al [6] al.
Al [6] al.
0.85
system which was [30] using processes.
プロセスを使った[30]システム。
0.71
simulated studies decision a Markov Several or algorithms deceptive ML-based classifiers examine its attack 27, 6, accuracy 8, [1, 7, 124].
A masquerade 21, simulated evaluate is developed techniques detection the deception of [27, based game143].
仮面21を模擬評価し、[27, based game143]の誤認を検出する技術を開発した。
0.72
on types 32, evaluated deception based theoretic been framework 23, 24, models simulation on based 30, 19, [14, 15, 96, 73, 65, 49, 33, 32, 100, 45, 74, 97, 99, 75, 81, 106, 111, 114, 132, 133, Simulation-based 141, 145, been of a showing models to concept proof the demonstrate deception runtime of the automated 33].
algorithm [19, Emulation Testbed-Based environments network deception resources place on techniques real-like emulated in techniques
アルゴリズム [19, emulation testbed-based environment network deception resources place on techniques real-like emulated in techniques
0.94
137]: [42, 56, to dyproposed obfusdeploy code to and [42], deploy network data center
137]: [42, 56, to dyproposed obfusdeploy code to and [42], deploy network data center
0.78
Various have 12, 13, 85, 87, 153].
12, 13, 85, 87, 153]
0.51
have proposed Evaluation have been [137], decompilers SDN-based
提案しました 評価は[137]、逆コンパイラSDNベース
0.58
Bilinski simulated also to
ビリンスキーもシミュレートしました
0.44
their et al. [44, with
彼らもだ [44, with]
0.71
developed deceptive
開発 deceptive
0.74
proposed 5, to 3)
提案 5から1。 3)
0.74
a Emulation namically cation DD testbed.
あ エミュレーション ナミカルカチオン DD テストベッド。
0.55
英語(論文から抽出)
日本語訳
スコア
1 4 Probability model-based Simulation model-based Real
1 4 確率モデルに基づくシミュレーションモデルに基づくReal
0.78
testbed-based
testbed‐based
0.58
8 22 Simulation model-based Emulation model-based Real
8 22 シミュレーションモデルに基づくエミュレーションモデルに基づくリアル
0.78
testbed-based
testbed‐based
0.58
5 1 31 Fig.
5 1 31 フィギュア。
0.74
7. Evaluation testbeds
7. 評価 試験ベッド
0.75
for ML-based defensive deception
MLベースの 防御 deception
0.75
techniques. Fig.
テクニック。 フィギュア。
0.51
6. niques. Evaluation testbeds
6. ニケス 評価 試験ベッド
0.69
for game-theoretic
ですから game‐theoretic
0.56
defensive deception
防御 deception
0.77
tech- 4, to an
技術 4, へ アン
0.68
have detect defender)
持ってる 検出 ディフェンダー)
0.55
application 144]: [2,
応用 144]: [2,
0.71
Testbed-Based 3, 16, collection
テストベッドベース 3・16・集
0.59
Evaluation for and choose profile
評価 プロフィールを選ぶと
0.63
study their classifier spammers a malicious various DD techniques honey-patches-based as
分類器を調べ スパマーはハニーパッチベースの悪意のある様々なDDテクニック
0.57
are networks real and polluters content to targets spamming 144].
ネットワークが本物で 汚染物質が144件のスパムを 狙うのが目的です
0.55
89, [88, 60, real validated under are [16], system deception [17], privacy users’ and preserving Machine and Analysis) State generating communication
89, [88, 60, real validated under [16], system deception [17], privacy users's and preservation machine and analysis)状態生成通信
0.77
60, 17, 84, [2, An data been has 3, 4].
60, 17, 84, [2, データには 3, 4]
0.70
Experiments with human-in-the-loop with or (e g been a attacker effectiveness such as HackIt to evaluate the deception on participating hackers under different deception significantly understand ultimately In addisettings, location PRISMA catool sessions for
real approaches noticeable summarized developing techniques
本当のアプローチは 技術開発を総括する
0.60
challenging by many are noticeable
多くの人が挑戦し 目立ちます
0.52
trends dominant to model design
主流の潮流 デザインをモデル化し
0.61
basically finding testbed-based
基本的には testbed‐based
0.50
we in the In this and limitations work.
私たちは はあ? これと制限は機能します。
0.57
In of set a
set a の in
0.64
IX. section, CONCLUSIONS discussed extensive the addition, based on the research future promising
IX。 セクション CONCLUSIONSは、将来的な研究目標に基づく追加について論じる
0.64
we from AND FUTURE WORK and insights lessons conducted survey conducted survey, we
我らは と 当調査における今後の取り組みと洞察の授業について概観する。
0.61
learned in this provided directions.
ここで学んだことは 方向だ
0.56
A. Insights We Section
A。 特集にあたって
0.59
and now revisit I-D. Lessons and
I-Dを再考する。 教訓
0.40
Learned the answer research
学んだこと 答え 研究
0.71
questions raised
質問 raised~
0.68
in or key avoid
イン あるいは 鍵 避ける
0.70
traditional from other sub-optimal
伝統 他から sub‐optimal
0.57
What it What metrics
なんだ? メトリクスは?
0.49
deception, attackers. characteristics defensive
詐欺だ 攻撃者 特性防御
0.59
with attackers if Particularly, defense defense confusion
特に攻撃者とは 防衛の混乱
0.61
defensive of techniques? deception defense mechanisms, interactions some requires risk as it certain level of misleading or confusing of aim the long term requires defense of goal the defensive In face to this case, risk.
inevitable legacy other with mechadefense be used detection mechanisms or prevention intrusion Moving target or high risk.
メカディフェンス以外の避けられない遺産は、検出機構や侵入防止に使用することができる。
0.54
(MTD) with a share similar techniques goal or increasing such as uncerobfuscation However, unlike MTD based configuration or information deception defensive a of system, of the with or aim information forming perception cognitive or a to choose a or poor
RQ Characteristics: deception distinguish Answer: Unlike requires a with them.
RQの特徴: 偽造はAnswerを区別する。
0.53
it is deception, can deception nisms as such too to obfuscation defensive for tainty system which changes resources existing the on objects false can create attacker’s misleading an the misbelief for attacker attack strategy.
based measured other the on hand, according is mainly deception evaluated to the accuracy of both metrics Current classifiers or congame-theoretic approaches have and sidered meaningful metrics deception defensive efficiency how techniques confusion or uncertainty much between or attackers mislead led has to of the quality and the of deploying the RQ Principles: the niques?
based determined and of attacker-to-deceive are what
攻撃者の判断と認識に基づく
0.72
decisions, key and when-to-deceive, should decisions be effectiveness between The technique.
意思決定、鍵はいつ、その決定はテクニック間の有効性であるべきだ。
0.53
whatbe answered based on attacks what and defender
攻撃やディフェンダーによって 答えられたのは
0.60
is three what-attacker-to-dec eive, three These design critical on tradeoffs a developed DD question should a by targeted
これら3つの設計はトレードオフに批判的であり、DDはターゲットによってすべきである。
0.61
for not effectiveness the to order investigate in created DD by the relationships effectiveness/efficiency
有効でないためには、to order study in created dd by the relationship effectiveness/effici ency
0.75
deception deception. What key design of efficiency and
偽装だ 効率のキーデザインとは何か
0.55
or to measure less existing game-theoretic
既存のゲーム理論の欠如を計測する
0.45
intrusion detectors. or ML-based DD
侵入検知器 MLベースのDD
0.68
principles defensive help deception
原則防衛 help + deception
0.65
maximize tech-
テクノロジーを最大化-
0.49
effectiveness to measure
有効性 to measure
0.76
efficiency attacks critical design
効率 攻撃 批判的 デザイン
0.73
make used of
作る 使用 ですから
0.61
to
へ
0.63
英語(論文から抽出)
日本語訳
スコア
a is the to the
あ は はあ? へ はあ?
0.51
MTD attack needed its goal
MTD 攻撃 必要 その目標は
0.77
handled question executed defensive
取扱い 質問 処刑 防御
0.64
application answer related attacker DD confuse
応用 関連解答 アタッカーDD混乱
0.67
features using game techniques
ゲーム技術を使った特徴
0.74
budget can would avoid a when theory?
予算は避けられます いつの説?
0.61
adopt an mainly defender and focuses on or mislead features design and a goal clear the player’s reflects simulating and types different (iii) metrics to articulated.
settings, detection may not some an temporarily to delay an deception is only until for enough time its a defense system can take reconfiguration (e g , operation certain deploying/performing or defense a attacker deceive an until the to fully an OS).
reconfigure RQ GT: design key are the What devised technique is deception Answer: DD Game-theoretic where framework attack-defense Game-theoretic game.
reconfigure RQ GT: design key is the What devised Technique is deception Answer: DD Game-theoretic where framework attack-defense Game-theoretic game。
0.90
zero-sum play defense strategies to optimal identifying increasing uncertainty.
ゼロサムプレイディフェンス戦略は、不確実性の増加を最適に識別する。
0.58
Three by attacker an have a needs player are: each (i) function that utility clear corresponding modeling (ii) resources; and intent, tactics, via uncertainty confusion or how to increase and be should elaborated; of DD techniques and efficiency should effectiveness measure RQ ML: features key design What the are using ML?
to types of datasets consider what the need To use fake believable develop techniques.
データセットのタイプに対して、偽の信じがたい開発テクニックを使う必要があるものを考える。
0.56
for mimicking real objects objects presupposes good datasets targeted and attack and develop approaches effectiveness should and is only to Additional metrics metric of ML-based DD should be offer techniques; automated traffics and network RQ Applications: techniques As multiple honey-X techniques, possibly in combination, are applicable.
For effective simpler domains, an easy-to-deploy honeypot is terms in and widely deception of quality the inreal looks honey-X much how of cost affects like the the technology.
example, for detecting deception since social influence
例えば 社会的影響から 詐欺を検知するために
0.58
spammers other users
スパマーは他のユーザー
0.56
unlegitimate should online or not the
合法でない者はネットで
0.58
attacks do in increase or
攻撃は 増加する、または増加する
0.45
control but •
コントロール でも •
0.78
• a of to
• あ ですから へ
0.63
B. the not
B。 The not ♪
0.62
limitations focused on the based
制限 焦点を合わせ 根拠は
0.66
such from they on Nash
そこから 彼らはナッシュにいる
0.45
theory existing generating used
理論は存在する 使用済みの発電
0.54
survey techniques Current Defensive Deception
測量技術 現行の防御欠陥
0.58
as APT modeling or extensive (DD) following
APTモデリングや extensive (複数形 extensives)
0.59
defensive state-of-the-art the on and game using ML, we approaches: of the
MLを使ったオン・アンド・ゲームにおける防御的状態:
0.70
attacks attacks complicated and performed with more
複雑な攻撃や より多くの攻撃を
0.81
have mainly identification equilibrium and detailed are often compromising other
主に平衡を識別し、詳細はしばしば他と衝突する
0.63
Limitations From our deception found the Although many DD techniques have used game-theoretic ap• theoretical validation proaches, optimal based of in which enough solutions, but considered simply nodes.
over or multistage one time, episode simple can we Therefore, benefit although processes, insider such attack as active reconnaissance it still is attack, challenging to game-theoretic deploy systems in DD complex on attacks and model real chain.
kill cyber an that observed We enterprise developed.
企業が開発したサイバーアンを殺せ
0.52
well domain that is and limited has domains been SDN IoT attacks.
ドメインが限定的かつ限定的であるドメインは、sdn iot攻撃である。
0.63
naissance and of of large amounts train ML models be to those current DD approaches for of complexity Due to high dealt with has theoretic a DD attacker defender, which and attack process or defensive when following attacks multiple the kill as processes, such cyber chain multiple When attacks arrive in a one between only interactions attacker practical the capture to is sufficient towards interpret response a certain responding to what action when there critical it although is is defender.
naissance and of large much train ml model be to those current dd approach for the modern dd approach for the complex because to high dealed with high dealed with the dd attack defender, which and attack process or defense when following attack multiple the kill as process, such cyber chain multiple when attacks arrived in a one between interaction attacker is practical the capture to is enough to interpret response at a certain response to a what action when there is defender. (英語)
0.84
attacker between and deception defensive game-theoretic Majority level using by an abstract are at addressing without analysis explicitly environment from the network derived is technique deception fensive a in are certain adopted and applied challenging deploy quite is how to platform due into work to given the for deployment process.
domains lack gamemost spaces, action for actions an set of limited model an accurately cannot perform can attacker the stages of attack multiple attacks.
the defender to How who is attackers) interactions
攻撃者である方法の擁護者)相互作用
0.66
clear the of studied
clear (複数形 clears)
0.39
attacker identity, not are data
攻撃者の身元はデータではなく
0.61
network the given of lack
与えられた不足をネットワーク化する
0.66
regarding Practically, deployed. When
実質的には 配備。 いつ
0.56
the such to model not
そんなの モデルに いや
0.66
not a a • •
いや あ あ • •
0.66
•
•
0.85
英語(論文から抽出)
日本語訳
スコア
a deception
あ deception
0.68
developing significantly limits such
開発 かなり この制限は
0.64
deception been much techless defensive in Only few information
だまが多かった 技術的に無防備な情報
0.59
training ML-based which tend models detectors.
モデル検出を行うmlベースのトレーニング。
0.57
to Moreover, target.
さらに、ターゲット。
0.52
his acting normally toward is attacker defender deceive to attacker to a decided effectiveness the defensive of deception clearly measured.
彼の行動は通常 攻撃者の被告人が 明らかに測定された偽造の 防御効果を攻撃者に騙す
0.71
not be game-theoretic defensive has defensive
ゲーム理論の防御には防御がある
0.54
defender, the or classifiers that assume the However, an if remain stealthy, techniques may Compared to niques, ML-based using ML of The majority studied.
ディフェンダー(de defender, the or classificationifiers that that that the But, an if still stealthy, techniques may be compared to niques, using ML-based using ML of the majority study。
0.77
techniques in detect is deception to attacks honeypots.
検出のテクニックは ハニーポットを 攻撃する詐欺だ
0.56
used ML have works to mimic real objects or for information.
used MLは、実際のオブジェクトや情報の模倣を行う。
0.82
or objects honey defensive or ML-based game-theoretic Although little has there studied, studies that been been has deception develop hybrid defensive techniques.
both to limited. Most are deception defensive of Evaluation metrics in game-theoretic DD approaches mainly used metrics game strateprobability theory, utility attack gies.
Most ML-based approaches were mainly studied detection attack achieve to using which as accuracy a utility and effectiveness detection accuracy, and core merit of using Evaluation els.
testbeds based are mostly some ML-based DD are mostly social platforms.
テストベッドベースのDDは、MLベースのDDが主にソーシャルプラットフォームである。
0.58
In particular, theoretical highly remain
特に理論上は非常に残っています
0.61
simulation used deployed game-theoretic analysis.
ゲーム理論解析を用いたシミュレーション。
0.72
or DD detection, major do
DD検出やメジャードーは
0.62
on approaches honeypots
ハニーポットに近づき
0.50
fully of DD approaches
DD アプローチに満ちた
0.80
to metrics, the the These capture based on
メトリクスや これらの捕獲は
0.45
efficiency deception. modreal in DD
効率を損ねる。 ddのmodreal
0.65
deception combine
偽装が組み合わさって
0.36
metric. not taking
メートル法 いや テイク
0.54
leads such of
リード そんな ですから
0.56
as • • • •
として • • • •
0.78
• as C. the
• として C。 はあ?
0.62
more research following directions
もっと 研究 以下 方向
0.71
Sections be Research Directions assessment systematic
区間 研究の方向性 評価体系
0.56
for design systematic security lack of available the
デザインを体系化し 利用可能なセキュリティの欠如
0.71
systematic There is a metrics and on key II), more to measure
組織 メトリクスがあり、キーII上には、もっと測定する
0.55
Future suggest the We research: future Need of • nologies: concepts prevalence.
future suggest the We research: future Need of • nologies: concept prevalence。
0.81
Based III in and should developed X technologies.
ベースIIIはXテクノロジーを開発・開発する。
0.73
considering Need of tackers: attacker An may deception defensive deception.
タッカーの必要性を考える:アタッカー 攻撃者は、防御的詐欺を欺く可能性がある。
0.48
However, defensive been approaches have validated and types.
しかし、防御的アプローチは検証され、型付けされている。
0.54
We attack behaviors performing multi-staged attackers accommodate that where a to defender needs take more defense tactics, intent, attacker’s on utilities.
goals, the measure to for Need a detect attacker An DD detect well the can effectiveness of techniques detectability the Hybrid defensive and ML: Hybrid
目標 攻撃者を検出するための尺度 dd がうまく検出する can の有効性 ハイブリッドディフェンスとml:ハイブリッド
0.60
sophisticated, be subtle defensive a small
洗練された 微妙な防御を
0.52
may adopt existing only with need to
必要なだけ既存のものを採用することができる
0.62
should attacker. deception defensive
攻撃すべきだ 偽装防御
0.68
strategic and deception a
戦略とデセプションa
0.70
based on techniques deception
テクニックの騙しに基づく
0.69
by deception the extent metric may attacker
偽りによって メトリックは攻撃するかもしれない
0.40
intelligent and deployed defensive of DD.
知的で 防御を施し DD。
0.56
A metric to measure
メートル法 to measure
0.73
consider game both
考えて ゲーム 両方
0.72
DD the by
DD はあ? ところで
0.58
• • to intelligent able responses
• • へ インテリジェントな応答
0.74
atdetect to deception variety of extend attack models attacks based
atdetect to deception 様々な拡張攻撃モデルに基づく攻撃
0.86
promising honey-X techof assessment security their despite honey-X (as concepts discussed assessment security effectiveness of honey-
literature. the observed have not ML game theory and own estimate their need to defenders and attackers Since ML-based belief to take, strategy what beliefs to decide view towards accurate its player’s a provide can estimation when addition, In will the take.
strategy it and opponent take to approach game-theoretic an optimal use players a of DD techniques can be also developed using strategy, a set the by the of quality increase to ML technologies or objects real mimicking information.
itと対戦相手がゲーム理論にアプローチする戦略 dd技術の最適な使用者 a は、ml技術や実際の模倣情報に対する品質向上によって設定される戦略を用いて開発することもできる。
0.80
more Need measure to metrics and efficiency of DD techniques: As we discussed in Section IX-B, studies game-theoretic most utility used and probabilwhile ities of ML-based DD approaches the major metric.
第IX-B節で議論したように、MLベースのDDのゲーム理論で最も有用で確率的な性質の研究は主要なメトリクスに近づきます。 訳抜け防止モード: dd技術のメトリクスと効率にもっと必要なもの : 第9x-b節で論じたように,研究ゲーム - ml の最も実用的かつ確率的な性質- は,dd が主要な指標にアプローチする。
0.62
Using accuracy mainly as meaningful metrics to measure the actual and can critical are deception defensive efficiency we on provide justifications why want introduce defense other over proactive DD approaches Need emulation, or real evaluation deception defensive game-theoretic studied been have approaches theoretic models.
The views and conclusions the are of as authors not should and or implied, representing the official expressed either policies, or Laboratory Research of Government.
Army U.S. the reproduce and distribute authorized to The U.S. Government is Government reprints purposes copyright herein.
アメリカ陸軍 アメリカ合衆国政府に認可された複製と配布は、政府による著作権のリプリントである。
0.66
addition, Research for notation
研究・研究 表記のために
0.61
contained in this notwithstanding interpreted
この中に ともかく 解釈
0.60
those any the
それら 何でも はあ?
0.48
the by be
はあ? ところで Be
0.52
REFERENCES G. Akcora, Y.
G. Akcora, Y。
0.64
C. C. [2] [1]
C。 C。 [2] [1]
0.81
Abay, Cyber Springer,
Abay サイバー Springer
0.52
Zhou, M. HoneyData,” 2019,
周、M。 2019年、『HoneyData』。
0.68
Autonomous 3–19. and V. Dutt,
自律3-19。 そして、V. Dutt。
0.59
Kantarcioglu, N. and B. Thuraisingham, “Using deep learning to generate in relational Deception.
Kantarcioglu, N. and B. Thuraisingham, “Desing Deep Learning to generate in relational Deception”。
0.89
pp. P. Aggarwal, C. Gonzalez, Role of deception in Human vances pp.
pp. P. Aggarwal, C. Gonzalez, Role of deception in human vances pp。
0.89
2016, 85–96.
2016, 85–96.
0.84
[3] ——, “Modeling the ception in simulated Conference national Data And 2017, P. and
と、”modeling the ception in simulated conference national data and 2017 p. and” と題された。
0.82
amount and timing of descenarios,” 2017 InterAwareness, IEEE,
と2017 InterAwareness, IEEEは述べている。
0.45
Analytics 1–7. pp.
分析1-7。 pp.
0.72
Aggarwal, A.
Aggarwal, A。
0.78
“HackIt: Dutt, V.
“hackit: dutt, v。
0.65
“Cyber-security: in detection,” AdSpringer,
サイバーセキュリティ:検出中”とAdSpringerは言う。
0.69
effects of network On Cyber Assessment
ネットワークがサイバーアセスメントに及ぼす影響
0.81
C. human-in-the-loop
C. Human-in-theloop
0.43
in Situational (Cyber
situational (複数形 situationals)
0.51
Gonzalez, simulation
ゴンザレスシミュレーション
0.42
Gautam, A
Gautam (複数形 Gautams)
0.40
in Factors Cybersecurity.
in factor サイバーセキュリティ。
0.69
cyber-attack Agarwal,
サイバー攻撃 Agarwal
0.53
SA). [4] V.
SA)。 [4] vだ
0.78
in
イン
0.56
英語(論文から抽出)
日本語訳
スコア
L. R. K. D.
L。 R。 K! d.
0.74
Al for [7]
Al ですから [7]
0.75
[6] [5] Njilla,
[6] [5] Njilla
0.73
Amin, Shetty,
Amin Shetty
0.48
realistic Inand planning capability
現実的 稲荷 計画 能力
0.60
S. “Online
S. "オンライン"
0.60
observable Monte-Carlo
観測可能なモンテカルロ
0.48
large-scale Security and
大規模セキュリティと
0.84
in experiments,” Factors the in Communication
実験では」要因は コミュニケーションにおいて
0.84
Shetty, Tosh, cyber deception system using framework,” International Conference on SecuSpringer,
Shetty, Tosh, Cyber deception system using framework”, International Conference on SecuSpringer
0.74
deception tool cyber Applied Human on ternational Conference pp.
deception tool Cyber Applied Human on ternational Conference pp。
0.78
2019, Springer, Ergonomics.
2019年、スプリンガー、エルゴノミクス。
0.55
109–121. and D. S. Al Amin, M. Tosh, Njilla, L. dedynamic “Attacker C. Kamouha, based networks,” ception model for Endorsed EAI 6, Safety, vol.
109–121. そしてD.S. Al Amin, M. Tosh, Njilla, L. dedynamic “Attacker C. Kamouha, based networks”, Endorsed EAI 6, Safety, vol.D.S. Al Amin, M。
0.74
no. 21, Transactions on 2019.
ダメよ 21の取引を2019年に開始。
0.55
M. A. and C. Kamhoua, partially in Proceedings of and Privacy rity pp.
M. A. and C. Kamhoua, part in Proceedings of and Privacy rity pp。
0.91
2019, 205–223.
2019, 205–223.
0.84
R. Al Amin, M. A. S. Shetty, L. A. and “Dynamic Kamhoua, C. observable monte-carlo partially and Design Modeling Secure 331–355, 2020.
R. Al Amin, M. A. S. Shetty, L. A. and "Dynamic Kamhoua, C. observable monte-carlo part and Design Modeling Secure 331–355, 2020.
0.84
E. J. “Towards tonomous 33.
E.J。 『tonomous 33』。
0.72
M. integrating in shop, [10] ——,
M. の店内統合, [10] -,
0.74
Tosh, L. Njilla, D. K. using cyber deception framework,” planning Things, pp.
Tosh, L. Njilla, D. K. using cyber deception framework”, planning Things, pp.
0.93
of Internet and E. H. computer into of New Security Proceedings pp.
インターネットの そしてE. H. Computer into of New Security Proceedings pp.
0.84
2014, 127–138.
2014, 127–138.
0.84
security “Cyber 23–50.
セキュリティは“Cyber 23–50”。
0.60
pp. 2016, B. D. Alshammari, and L. L. Njilla, Status, Challenges,
pp. 2016年 B. D. Alshammari と L. L. Njilla, Status, Challenges
0.86
and security defenses,” Paradigms Work-
とパラダイムは機能します。
0.23
M. Deception and Perspectives.
M. deception and Perspectives
0.76
Almeshekah deception the
Almeshekah deception
0.62
Wei, intelligent Cyber
Wei、インテリジェントサイバー
0.67
K. cyber Deception.
K. Cyber Deception の略。
0.56
and C. systems,” 2019,
そしてc. systems” 2019年。
0.79
W. Hamlen, deception
W. Hamlen, deception
0.98
Wang, in Aupp. 21–
ワン、auppで。 21–
0.58
A. AdWiley
A. AdWiley
0.88
Garuba, for
ガルーバ(ガルーバ)
0.42
Cyber Deception. C. Cyber
サイバー詐欺。 C.サイバー
0.60
deception,” “Planning
だまされた」。 「企画」
0.53
Al-Shaer, Spafford,
Al-Shaer スパフォード
0.67
Springer, Systems.
Springer システム。
0.63
Rawat, [8] [9]
Rawat [8] [9]
0.71
H. in of
H! イン ですから
0.60
141–160. N.
141–160. N!
0.69
Conference Leslie,
講演会 Leslie
0.50
and “Honeypot in cyber deception games,” Net502–
サイバー詐欺ゲームにおけるHoneypot”, Net502–
0.74
Computing, pp.
コンピューティング、p. 。
0.67
2020, on (ICNC),
2020, on (複数形 ons)
0.62
Conference N. Leslie,
講演会 N! Leslie
0.56
and “Honeypot in cyber deception games,” Net2020,
Net2020, “Honeypot in Cyber deception Games” などだ。
0.87
Computing, IEEE,
コンピューティング、IEEE、
0.56
on (ICNC).
ICNC (ICNC)。
0.64
Communications and C. Kamhoua, in Theory
通信 そしてC.カムホアは理論で
0.71
deception,” theory
だまされた」。 理論
0.58
attack “Game International Conference Springer, for
game international conference springer”を攻撃
0.62
Security. on
セキュリティ。 オン
0.69
[11] [12] [13]
[11] [12] [13]
0.85
[14] [15] [16]
[14] [15] [16]
0.85
Communications pp. International and
通信 pp. 国際化と国際化
0.70
C. Kamhoua, attack graphs
C. Kamhoua, attack graphs
0.99
Springer, A. Kamhoua, versaries: 2020, Library, Online C. A. Anwar, Kamhoua, H. allocation over attack graphs in 2020 working 506.
Springer, A. Kamhoua, versaries: 2020, Library, Online C. A. Anwar, Kamhoua, H. allocation over attack graphs in 2020 in 506。
0.94
A. Anwar, H. allocation over in International 2020 and working pp.
A. Anwar, H. allocate over in International 2020 and working pp。
0.91
502–506. A. H. Anwar graph on Decision 2020.
502–506. a. h. anwar graph on decision 2020 (英語)
0.71
A. H. theoretic internet 16th EAI uitous 2019, F. S. Lightweight formation,” in Proceedings of ence
A.H. Theoretic Internet 16th EAI uitous 2019, F.S. Lightweight formation”. Proceedings of ence
0.94
522–526. W. “From
522–526. W. “From
0.82
Computing, Kamhoua,
コンピューティング カムホア
0.42
and Game Anwar,
ゲームは Anwar
0.54
cyber for C.
サイバー ですから C。
0.62
“A for things,”
「あ」 と語っています。
0.48
N. and Leslie, cyber dynamic in Proceedings
N. and Leslie, Cyber dynamic in Proceedings
0.92
gamein framework of battlefield the International Conference on Mobile and UbiqServices, Systems: pp.
gamein framework of battlefield the international conference on mobile and ubiqservices, systems: pp. (英語)
0.86
Araujo, K. Katzenbeisser,
Araujo, K. Katzenbeisser
0.83
deception of
deception (複数形 deceptions)
0.29
S. patches attacker misdirection,
S.は攻撃者の誤った方向をパッチする
0.42
Biedermann, to deception,
Biedermann (複数形 Biedermanns)
0.76
and honey-patches: disinthe ACM SIGSAC ConferNew
ハニーパッチ:ACM SIGSAC ConferNewを廃止
0.73
on Computer and Communications Security.
コンピュータと通信のセキュリティについて。
0.65
Networking Hamlen,
ネットワーク Hamlen
0.64
and and 25
そして そして 25
0.76
[17] [18] [19]
[17] [18] [19]
0.85
[20] [21] [22]
[20] [21] [22]
0.85
[23] [24] [25]
[23] [24] [25]
0.85
[26] [27] [28]
[26] [27] [28]
0.85
[29] [30] P.
[29] [30] P。
0.83
di on pp. 2002.
ディ オン pp. 2002.
0.71
2014, “Location
2014, 『所在地』
0.65
Proceedings techniques,”
経過 テクニック”だ。
0.54
and social Fuzzy” Finger-
社会的に ファジィ」フィンガー
0.64
Vimercati, through
ヴィメルカティ 通して
0.48
Springer, Yarochkin,
Springer, Yarochkin
0.67
Martinelli, 2017,
マルティネリ、2017年。
0.55
org, “Ghost in
ghost (複数形 ghosts)
0.54
C. Papadopoulos, service
c. papadopoulos, service
0.93
2365–2370.
2365–2370.
0.71
and active and Samarati, obfuscation-based
活発に そして、難解なサマラティ
0.43
S. De Capprivacy in and G.-J.
S. De Capprivacy in and G.-J.
0.86
Rome: 399–412.
ローマ:399-412。
0.56
“Formally modeling approach,” Com-
「フォーマル・モデリング・アプローチ」com-
0.69
2018. 182–190, J. J. Tran, Lee, T. online in netACM International 25th Information and Knowledge Manage-
2018. 182-190, J. J. Tran, Lee, T. online in netACM International 25th Information and Knowledge Manage-
0.85
patches: Fake Proceedings of the SysICT and Privacy Protection, S. De Capitani di Springer F.
Fake Proceedings of the SysICT and Privacy Protection, S. de Capitani di Springer F. (英語)
0.79
York, NY, USA: ACM, 942–953.
ヨーク、ニューヨーク、アメリカ:ACM、942-953。
0.85
C. A. Ardagna, M. Cremonini, E. Damiani, itani protection Data and Applications Security XXI, S. Barker 2007, pp.
C. A. Ardagna, M. Cremonini, E. Damiani, Itani protection Data and Applications Security XXI, S. Barker 2007 pp.
0.94
Berlin: 47–60.
ベルリン:47-60。
0.64
Ahn, Eds. “Xprobe and F. O. v2.
エドス(Eds)。 とXprobeとF.O. v2。
0.73
0,” Arkin Active Operating to Remote Approach Systems xprobe2.
Arkin Active Operating to Remote Approach Systems xprobe2。
0.59
http://www.
http://www.com。
0.55
printing,” E. and Avery J. Spafford, H. vulnerabilities,” fake for patches IFIP TC 11 32nd International Conference Security tems Eds.
IFIP TC 11 32nd International Conference Security tems Eds. E. and Avery J. Spafford, H. vulnerabilities”. IFIP TC 11 32nd International Conference Securitytems Eds.
0.78
and Vimercati pp.
とvimercati pp。
0.59
International Publishing, R. Wallrabenstein, and J. Avery J. game-based a using deceptive patches pp.
International Publishing, R. Wallrabenstein, and J. Avery J. game-based a using deceptive patch pp。
0.90
75, vol. puters & Security, Lee, D. K. R. P. Satya, Badri likers fake “Uncovering Zhang, works,” in of the on Conference on ACM, ment.
75、Vol。 puters & Security, Lee, D. K. R. P. Satya, Badri likers fake “Uncovering Zhang, work” in the on Conference on ACM, ment. ]
0.77
2016, pp. G. J. Bartlett, Heidemann, and passive derstanding discovery,” ACM SIGCOMM conference Proceedings of the 7th pp.
2016年、p。 g. j. bartlett, heidemann, and passive derstanding discovery”. acm sigcomm conference proceedings of the 7th pp. (英語)
0.70
2007, Internet measurement, 57–70.
2007年 - 57-70頁。
0.61
Basak, C. A. Kamhoua, Gutierrez, M. Gutierrez, S. A. C. D. Anwar, A. Kiekintveld, H. AlgoIdentifying in rithms for Stealthy Game Framework Using Deception.
Basak, C. A. Kamhoua, Gutierrez, M. Gutierrez, S. A. C. D. Anwar, A. Kiekintveld, H. AlgoIdenify in rithms for Stealthy Game Framework using Deception。
0.90
Wiley Online Theoretic 2021.
wiley online theoretic 2021年発売。
0.63
Library, A. C. Basak, A. H. Anwar, in attackers a tion,” in International Game Theory 32.
A.C. Basak, A. H. Anwar, in attacks a tion”. International Game Theory 32. (英語)
0.86
Olsder, T. 1999, Game Whaley, J.
Olsder, T. 1999, Game Whaley, J
0.82
B. 1991. Transaction, New York, and S. M. Stolfo, and detecprofiling techniques user tion,” of Wireless Mobile Networks, Ubiquitous 1, Computing 2012.
B。 1991. Wireless Mobile Networks, Ubiquitous 1, Computing 2012の“Transaction, New York, and S.M. Stolfo, and detecprofiling techniques user tion”。
0.83
Mar. M. and Bennett and Applications 2007.
Mar M. and Bennett and Applications 2007
0.66
C. Small, and L. Camp, K. Benton, in vulnerability assessment,” Proceedings on Hot ACM SIGCOMM Workshop Topics 151–152.
c. small, and l. camp, k. benton, in vulnerability assessment”. hot acm sigcomm workshop topics 151–152. (英語) 訳抜け防止モード: C. Small, and L. Camp, K. Benton, in vulnerabilities Assessment”. The Proceedings on Hot ACM SIGCOMM Workshop Topics 151–152
0.95
Defined Networking, pp.
ネットワークの定義, pp。
0.86
2013, S. Ferguson-Walter, M. Bilinski, K. “You J. Mauger, only round cyber game of questionable in Decision on Conference
2013 S. Ferguson-Walter, M. Bilinski, K. “You J. Mauger, only round cyber game of questionible in Decision on Conference
0.96
Fugate, R. Gabrys, twice: A multilie veracity,” Game and
Fugate, R. Gabrys, twice: A multilie veracity” ゲームとゲーム。
0.91
“Identifying using Decision pp.
「決定による特定」p。
0.62
2019, Kamhoua, and C. Kiekintveld, game
2019, Kamhoua, and C. Kiekintveld, game
0.90
Gutierrez, stealthy decepand 21–
Gutierrez, stealthy decepand 21–
0.99
“Combining baiting for masquerade “Openflow the of 2nd in Software
『仮面舞踏会』 ソフトウェアにおける第2のオープンフロー
0.61
framework on Springer,
Springerのフレームワーク
0.54
Ben search Journal
Ben Search Journal
0.79
Principles Artech House,
principles artech houseの略。
0.61
Dynamic vol.
ダイナミックvol。
0.66
23. Cheating and Theory.
23. 浮気 そして理論。
0.69
and Bell E. Waltz, for National
ベルは E. Waltz, for National
0.70
and Dependable Applications,
そして Dependable Applications。
0.67
G. J. Siam, B.
g. j. siam, b.
0.80
and B. deception
そしてB. deception
0.79
Scalable a
Scalable a
0.85
“Unin on Counterdeception Venkatesan, M.
「はい。」 偽装 Venkatesan, M。
0.53
Noncooperative International Conference
非協力 国際 講演会
0.62
Deception. Attackers Security.
偽り。 攻撃者 セキュリティ。
0.63
Security. theoretic
セキュリティ。 理論
0.59
Souza, Salem
Souza セイラム
0.52
Bas¸ar vol.
バスサール Vol.
0.46
and and no.
そして そして ダメよ
0.66
for S. 3,
ですから S。 3,
0.72
J.
J。
0.77
英語(論文から抽出)
日本語訳
スコア
[31] [32] [33]
[31] [32] [33]
0.85
[34] [35] [36]
[34] [35] [36]
0.85
[37] [38] [39]
[37] [38] [39]
0.85
[40] [41] [42]
[40] [41] [42]
0.85
[43] [44] A.
[43] [44] A。
0.81
E. Q. Zhu, for
e. Q。 ズー ですから
0.58
theoretic Morales,
理論 Morales
0.48
Computer Networks,
コンピュータ ネットワーク
0.62
Combinatorics Carroll of
コンビニティクス キャロル
0.37
threats,” Theory, investiand 1162–
と理論は言う。 1162年生まれ。
0.36
2019, pp. obfuscation
2019年、p。 obfussion
0.61
and docand 2009,
2009年のドカンドは
0.60
Engler, of in 8,
エングラーは8歳だった。
0.44
Barford, in InterConference.
バーフォード、インターカンファレンス。
0.77
Springer, “Code Journal
Springer, “Code Journal”
0.98
65–84. techniques Virol-
65–84. 技術 virol-
0.75
J. “Compliance deterrence of
J。 【遵守の抑止】
0.67
and complex and Caddell,
複雑でキャドデルです
0.39
Keromytis, using decoy on Security Springer,
Keromytis,Security Springerでdeoyを使用する
0.74
game security,” Security 10, 4, no.
ゲームセキュリティ” セキュリティ 10, 4, no.
0.70
pp. Wright, and games: Toward modComputational vol.
pp. Wright, and games: towards modComputational vol.
0.84
3, Cai, attacker-defender Computing 2009, pp.
3, Cai, attacker-defender Computing 2009 pp。
0.86
and D. deception
そしてD. deception
0.76
Security. Theory and L. M´e, J.-M. Borello metamorphic viruses,” for in 2008.
セキュリティ。 理論とL. M ́e, J.-M. Borello metamorphic virus”. 2008年。
0.79
211–220, pp.
211-220, pp。
0.59
3, 4, ogy, no.
3, 4, ogy, no.
0.85
vol. Hershkop, S. M. B.
Vol. Hershkop, S. M. B。
0.79
A. Bowen, D. attackers “Baiting Stolfo, S. J. inside uments,” in International Conference Systems.
A. Bowen, D. attacks “Baiting Stolfo, S. J. inside uments”. International Conference Systems. (英語)
0.84
Privacy Communication in 51–70.
プライバシ通信は51-70。
0.56
pp. Cadar, D. Dunbar, C. “KLEE: Unasand D. R. sisted automatic tests high-coverage generation systems for programs,” Systems Operating Implementation, pp.
pp. Cadar, D. Dunbar, C. “KLEE: Unasand D. R. Sisted automatic testing high-coverage generation systems for programs”. Systems Operating implementation, pp.
0.90
2008, vol. 209–224.
2008年4月。 209–224.
0.72
Design “Deception J. W. 101-primer deception,” on DTIC Document, Tech.
DTIC Document, Tech による "Deception J. W. 101-primer deception" の設計
0.88
Rep., 2004. Alfeld, C. Yegneswaran, J.-Y.
2004年、退社。 Alfeld, C. Yegneswaran, J.-Y。
0.78
P. and game “An honeynets,” for and national Springer, 7–16.
P. and game “An honeynets” for and national Springer, 7–16。
0.92
Grosu, T. “A E. network gation in vol.
Grosu, T. “A E. network gation in vol。
0.94
Communication 1172, 2011.
2011年、1172年。
0.57
W. Casey, signaling B. Mishra, eling insider the and Mathematical Organization 318–349, pp.
W. Casey, signaling B. Mishra, eling insider the and Mathematical Organization 318–349, pp。
0.93
W. Casey, A. “Compliance social-technological Proceedings the shop on Managing 53–62.
ケイシー、A。 “53-62の経営に関する社会工学的手続きを遵守する。
0.50
R. A. in Working planning processes, C¸ eker, H. H. Soong, to mitigate national Conference Springer, Security.
r. a. ワーキングプランニングプロセスにおいて、c. eker, h. h. soong は全国会議 springer, security を緩和する。 訳抜け防止モード: R. A. in working planning process, C ? eker, H. H. Soong 国家会議スプリングアー・セキュリティを緩和する。
0.71
GotM. R. T. Sugrim, tlieb, cyber G. Walther, security in MILCOM 2016-2016 IEEE Military Communications Conference.
GotM。 R. T. Sugrim, tlieb, Cyber G. Walther, security in MILCOM 2016-2016 IEEE Military Communications Conference
0.89
pp. 2016, IEEE, obfuscation “Advanced Yang, and W. Chan J.-T. bytecode,” Java for niques of Journal Systems 2004.
pp. 2016 IEEE, obfuscation “Advanced Yang, and W. Chan J.-T. bytecode” Java for niques of Journal Systems 2004。
0.86
1–10, Apr.
1-10, Apr。
0.56
1, vol. Software, no.
1、Vol。 ソフトウェアではない。
0.70
pp. 71, study C. Desmet, P. Chen, L. and Huygens, “A in Advanced Threats,” Persistent of on Communications IFIP International Conference 63–72.
pp. 71, C. Desmet, P. Chen, L. and Huygens, “A in Advanced Threats, Persistent of on Communications IFIP International Conference 63–72。
0.86
Springer, 2014, Multimedia Gottlieb, C.-Y.
Springer, 2014, Multimedia Gottlieb, C.-Y。
0.95
M. J. M. Poylisher, A. R.
M. J. M. Poylisher, A. R.
0.81
and B.La, approach theoretical game Interof Proceedings the and Game Theory for 18–38.
そして、b.la, approach theoretical game interof proceedings the and game theory for 18–38。
0.82
pp. Y. Chiang, J. C.-Y.
pp. Y. Chiang, J. C.-Y。
0.79
C. Sapello, S. Serban, “CyberVAN: A al., network testbed,”
C. Sapello, S. Serban, “CyberVAN: A al., network testbed”。
0.92
2016. Mishra, B. and Q. in surface vulnerability control: Managed signaling via games,” in ACM CCS International Workpp.
2016. Mishra, B., Q. in surface vulnerability control: Managed signaling via game”. ACM CCS International Workpp.com
0.83
Threats, Security partially with vol.
脅威、セキュリティ 一部はVolで
0.56
1724, J. Zhuang, “Deception-based in DoS
1724年、j. zhuang: “dosのデセプションベース”
0.55
applications,” symposium on decision
アプリケーション”決定に関するシンポジウム
0.65
1998. S. Upadhyaya, Q. D.
1998. S. Upadhyaya, Q. D。
0.87
Security. Chiang, Y. Serban, C.
セキュリティ。 Chiang, Y. Serban, C。
0.81
POMDP fall Markov
POMDP Fall Markov
0.82
of 1998 observable
1998年 観測可能で
0.66
systems 7th Insider
システム第7インサイダー
0.73
on Decision 2016, Cassandra, notes
2016年決定。 Cassandra, ノート
0.70
Sugrim, Marvel,
Sugrim, Marvel
0.66
Bowen, A. survey AAAI
Bowen, A。 AAAI調査
0.78
L. M. Marvel on the and
L.M.マーベル on the and ♪
0.55
A. Morales,
A. Morales
0.78
Proceedings 1125–1130.
経過 1125–1130.
0.59
techand pp. S. L.
技術者 pp. S.L。
0.75
Poylisher, attacks,”
Poylisher アタック」。
0.41
Chadha, Chadha,
Chadha Chadha
0.50
assured “A of virtual
保証する 「a」 Virtual
0.66
22, no. Zhu,
22, ダメよ ズー
0.56
J. 2015, A.
J。 2015, A。
0.78
J. V. of
J。 vだ ですから
0.67
et 26 in in
など 26 イン イン
0.64
An relay cyber 2020,
安 中継 サイバー 2020,
0.65
routing moving adaptive
ルーティング 動く 適応性
0.66
“ACyDS: networks,”
AyDS: ネットワーク”だ。
0.55
Sharma, J. Moore,
シャーマ、j・ムーア。
0.61
analysis of pp. Zhu,
pp. の解析 ズー
0.53
and Hypergame 2019,
とHypergame 2019。
0.74
S. Chadha, “On SDN,”
S. Chadha, “On SDN”
0.83
access. in breadth: systems,” Simulation,
アクセス システム(systems)”シミュレーションです。
0.50
deception: the (MILCOM).
deception: MILCOM (MILCOM)。
0.73
Singh, Modeling on based Springer Nature,
Singh, Modeling on Based Springer Nature
0.71
Chiang, R. Albanese, using
Chiang, R. Albanese, using
0.97
Springer, C. and C. informed of
Springer、C.、C.に知らせる
0.72
deception Com800–805.
Com800-805。
0.48
pp. Sugrim, A. J. and Cam, H. case A IEEE Military 2018, IEEE,
pp. Sugrim, A. J. and Cam, H. case A IEEE Military 2018, IEEE
0.90
Santos, in MILCOM 2016-2016 IEEE Military 2016, IEEE, S. Venkatesan, Colbert, E. I. cyber defensive in Proceedings of
Santos, in MILCOM 2016-2016 IEEE Military 2016, IEEE, S. Venkatesan, Colbert, E. I. Cyber Defense in Proceedings of Proceedings
0.93
and J. system,” munications Conference.
とMunnications Conferenceは述べている。
0.45
C.-Y. J. Youzwak, M. study Communications Conference 110–115.
C-Y。 J. Youzwak, M. study Communications Conference 110-115
0.70
pp. Yoon, H. Alavizadeh, S. P. D. Cho, J.-H. and D. S. H. Kim, Lim, T. Ben-Asher, N. defense: adaptive proactive, A “Toward Nelson, F. F. defense,” target on survey CommunicaIEEE 1–1, early Tutorials, pp.
pp. Yoon, H. Alavizadeh, S. P. D. Cho, J.-H. and D. S. H. Kim, Lim, T. Ben-Asher, N. Defense: Adaptive Proactive, A "Toward Nelson, F. F. Defense" target on survey CommunicaIEEE 1-1, Early Tutorials, pp。
0.84
tions Surveys “Cyber defense J.-H. Cho and N. Ben-Asher, and defense integrated Modeling of Journal Modeling The and Defense 2018.
Cyber Defense J.-H. Cho and N. Ben-Asher, and Defense Integrated Modeling of Journal Modeling The and Defense 2018” オプション調査。
0.85
2, 15, no.
2, 15, No.
0.84
vol. 147–160, and Cho, M. J.-H. P. M. Games of Analysis Deception Cham, Theory.
Vol. 147-160, and Cho, M. J.-H. P. M. Games of Analysis Deception Cham, Theory
0.75
Switzerland: ch. 4, pp.
スイス語: ch。 4, pp。
0.79
49–74. A. Clark, Q. Zhu, R. Poovendran, and T. Bas¸ar, “Deceptive Proceedings of the International Conference on Decision and Game Theory Security.
49–74. A. Clark, Q. Zhu, R. Poovendran, T. Bas sar, “Creceptive Proceedings of the International Conference on Decision and Game Theory Security”。
0.81
for E. Cranford, M. Tambe, Cognitively signaling 53rd Proceedings Hawaii 2020.
E. Cranford, M. Tambe, Cognitively signaling 53rd Proceedings Hawaii 2020
0.84
System Sciences, ence on Cranford, A. E. C. Gonzalez, P. Aggarwal, “Towards Lebiere, M. C. and Tambe, defense cyber signaling deceptive for models,” in Proceedings of the 17th CA, vol.
system sciences, ence on cranford, a. e. c. gonzalez, p. aggarwal, “towards lebiere, m. c. and tambe, defense cyber signaling deceptive for models” in the 17th ca, vol. 訳抜け防止モード: System Sciences, ence on Cranford, A. E. C. Gonzalez, P. Aggarwal Lebiere, M. C., Tambe, Defense Cyber Signaling deceptive for model”[原文へ] in Proceedings of the 17th CA , vol .
0.90
56, ICCM, Montreal, the L. D. Herbig, K. and C. 1982.
56, iccm, モントリオール, l. d. herbig, k., c. 1982。
0.78
Pergamon, Deception.
Pergamon, Deception の略。
0.62
V. J. P. Danzig, Mogul, Paxson, (2008) The Internet traffic archive.
V. J. P. Danzig, Mogul, Paxson, (2008) インターネットトラフィックアーカイブ。
0.89
http://ita.ee.lbl.go v/html/traces.html F. De Gaspari, S. new A “AHEAD: Proceedings of the Decision Making 11–16.
F. De Gaspari, S. new A "AHEAD: Proceedings of the Decision Making 11–16。
0.72
C. K. Dimitriadis, with security vol.
C. K. Dimitriadis, with security vol.
0.96
5, no. 4, Dixit, A. F. Kompella, R. in controller,” Workshop on Hot 2013, ing, pp.
5位はノー。 4 dixit, a.f. kompella, r. in controller” workshop on hot 2013 ing, pp. (英語)
0.71
Dunnigan F. J. 2nd ed.
ダニガン・F・J 第2回。
0.46
Writers K. Durkota, V. “Optimal
作家K. Durkota, V. “Optimal”
0.77
“Improving honeynets,” IEEE 2007. pp.
IEEE 2007, pp. “Improving honeynets”。
0.84
40–47, and Mukherjee, T. Hao, S. SDN elastic an “Towards of Proceedings 2nd ACM SIGCOMM the Software Defined NetworkTopics in
40-47, and Mukherjee, T. Hao, S. SDN elastic an "Towards of Proceedings 2nd ACM SIGCOMM the Software Defined Network Topics in"
0.89
and A. Panico, Jajodia, L. V. Mancini, defense,” active architecture in on 2016 ACM Workshop Automated pp.
2016 ACM Workshop Automated pp.”. A. Panico, Jajodia, L. V. Mancini, Defense”. 2016 ACM Workshop Automated pp.
0.78
2016, Defense, for
2016年、国防省。
0.73
2012, P. Gonzalez, Lebiere, “Adaptive for International
2012年 P. Gonzalez, Lebiere, “Adaptive for International”
0.94
171–185. pp.
171–185. pp.
0.78
S. Aggarwal, Cooney, deception: cyber in defense,” cyber Confer-
S. Aggarwal, Cooney, deception: Cyber in Defense”. Cyber Confer-
0.92
7–12. Nofi, A. and A.
7–12. Nofi, A, A。
0.71
Press, Club 2001.
2001年、クラブ入社。
0.75
Boˇsansk`y, Lis`y, B.
ボヘサンスク、Lis`y、B。
0.46
Annual Meeting 2019.
2019年大会開催。
0.78
Strategic S. Cooney, personalized cognitive of
戦略 S. Cooney、パーソナライズされた認知
0.74
and Schwartz. [Online].
そしてシュワルツ。 [オンライン]
0.61
Available: network security hardening using attack
利用可能。 攻撃によるネットワークセキュリティ強化
0.66
C. Kiekintveld, graph
C. Kiekintveld, graph
0.98
Lakshman, distributed
Lakshman 配布
0.51
mobile Security
モバイルセキュリティ
0.73
network Privacy,
ネットワークのプライバシー。
0.64
core & Military Victory
コア&コア 軍 勝利
0.70
Daniel deceit, Active
ダニエル だまして 活動
0.54
Cyber using and
サイバー 利用 そして
0.67
and the for
そして はあ? ですから
0.54
M. [45] [46]
M。 [45] [46]
0.83
[47] [48] [49]
[47] [48] [49]
0.85
[50] [51] [52]
[50] [51] [52]
0.85
[53] [54] [55]
[53] [54] [55]
0.85
[56] [57] [58]
[56] [57] [58]
0.85
英語(論文から抽出)
日本語訳
スコア
27 [59] [60]
27 [59] [60]
0.85
[61] [62] [63]
[61] [62] [63]
0.85
[64] [65] [66]
[64] [65] [66]
0.85
[67] [68] [69]
[67] [68] [69]
0.85
[70] [71] [72]
[70] [71] [72]
0.85
in “A M. the
イン 「あ」 M。 はあ?
0.60
the Joint “The
はあ? ジョイント 『The』
0.53
social Idrissi
社会 Idrissi
0.79
(CiSt), pp.
(CiSt) pp.
0.72
M. web of
M。 web (複数形 webs)
0.55
Technology (ICCAIS).
技術 (ICCAIS)。
0.77
T. Shade, Azer, in on
T. Shade Azer (複数形 Azers)
0.62
Proceedings on Artificial of 24th Intelligence,
人工装具の進歩 第24インテリジェンス」です
0.63
International 2015. “A survey application,” Security
2015年国際化。 『調査申告書』, セキュリティ
0.60
Data 328–331.
データ328-331。
0.68
and M. networks
およびMネットワーク
0.78
Ismail, and A. securing web Big pp.
Ismail, and A. secure web Big pp。
0.87
Fatna, and A. framework,” Conference Security Ferguson-Walter,
games,” in Conference Ibrahim, M. N. A. Zawawi, F. Abdul I. M. Efendi, Z.
Ibrahim, M. N. A. Zawawi, F. Abdul I. M. Efendi, Z.
0.78
A. on Pahri, N. Rahim, A. M. in for techniques deception on IEEE 2019 Conf.
A. on Pahri, N. Rahim, A. M. in for Technique deception on IEEE 2019 Conf。
0.95
on 5th Int’l 2019, (BigDataSecurity), Cloud Nisrine, Younes, B. E. E. M. El for approach “A based on security honeypots,” in IEEE International Colloquium 2016 4th 2016, Information on Science and 638–643.
The 5th Int’l 2019, (BigDataSecurity), Cloud Nisrine, Younes, B. E. E. M. El for approach “based on security honeypots” in IEEE International Colloquium 2016 4th 2016, Information on Science and 638–643。
0.93
pp. decepnew El-Kosairy A. tion system the 1st Proceedings Applications & Computer International 1–10.
pp. deepnew El-Kosairy A. tion system the 1st Proceedings Applications & Computer International 1–10
0.83
2018, IEEE, Information Rogers, C. S. K. A. Jones, A. Combs, Trumbo, K. S. Nauer, K. M. Divis, A. experimental study: An tularosa and R. G. Abbott, effectiveness the to implementation and design quantify (SNL-NM), Lab National of Sandia deception.” cyber Rep., 2018.
2018, IEEE, Information Rogers, C. S. K. A. Jones, A. Combs, Trumbo, K. S. Nauer, K. M. Divis, A. experimental study: An tularosa and R. G. Abbott, Effective the Effective the implementation and design Quantify (SNL-NM), Lab National of Sandia deception..”. Cyber Rep. 2018. 2018.
0.86
Tech. Albuquerque, NM (United States), and M. MaJ. Mauger, K. Ferguson-Walter, S. Fugate, cyber decepjor, defensive for “Game theory adaptive tion,” in Symposium on 6th the of Annual Proceedings 1–8.
技術だ Albuquerque, NM (United States) and M. MaJ. Mauger, K. Ferguson-Walter, S. Fugate, cyber decepjor, defend for “Game theory adapt tion” in Symposium on the 6th Year Proceedings 1-8. ^ 公式サイト
0.77
2019, pp. Security, of Science Topics Hot the empirical K. assessment of J. Ferguson-Walter, “An deception for cyber defense,” Ph.D. effectiveness of dis2020.
2019年、p。 セキュリティ, of science topics hot the experience k. assessment of j. ferguson-walter, “an deception for cyber defense”, ph.d. effectiveness of dis2020。
0.78
sertation, University A honeynets: D. N. Grosu, and in “Deception game-theoretic analysis,” in the Proceedings of IEEE Workshop.
Setation, University A honeynets: D. N. Grosu, and in “Deception game-theoretic analysis” in the Proceedings of IEEE Workshop。
0.88
SMC Security and Assurance Information IEEE, 107–113.
SMC Security and Assurance Information IEEE, 107–113。
0.91
pp. 2007, K. Q. and Lim, Yang, Grover, A. in jamming techniques wireless International Journal of Ad Hoc 197–215, 4, 17, vol.
pp. 2007年、K. Q. and Lim, Yang, Grover, A. in jamming techniques Wireless International Journal of Ad Hoc 197–215, 4, 17。
0.86
puting, pp. no. Cho, Guo, Z. J.-H. I.-R. Chen, S. Hong, “Online T. Mitra, and countermeasures for trustworthy 2020.
p.p.。 ダメよ cho, guo, z. j.-h. i.-r. chen, s. hong, “online t. mitra, and countermeasures for trustworthy 2020”。 訳抜け防止モード: p.p.。 ダメよ Cho, Guo, Z. J.-H. I.-R. Chen, S. Hong オンラインTミトラと信頼できる2020年の対策」
0.63
J. Han, and M. Kamber, Data Mining: Concepts Pei, J.
J. Han, M. Kamber, Data Mining: Concepts Pei, J
0.79
Techniques. and N. Han, X. Kheir, in niques computer ACM Computing E. A. Hansen, D. namic games,” J.
テクニック。 そしてN. Han, X. Kheir, in niques computer ACM Computing E. A. Hansen, D. namic games”. J.
0.80
“Deception formation,” Symposium pp.
『デセプション・フォーメーション』、シンポジウムp。
0.50
W. Hofer, T. Edgar, D. Vrabie, control driven deception for the Proceedings IEEE of Technologies Homeland for 1–7.
W. Hofer, T. Edgar, D. Vrabie, control driven deception for the Proceedings IEEE of Technologies Homeland for 1-7。
0.90
2019, research A no.
2019, 調査はなし。
0.71
51, 2018. 4, S. Zilberstein, and observable partially for programming 709–715.
51, 2018. 4, S. Zilberstein, and observable for programming 709–715。
0.86
pp. vol. 2004, in 4, al., Ateskan, Y. S. H. Kizilocak with games non-cooperative inDARPA-JFACC of Proceedings the 2nd Control, 2000, Advances in Enterprise
pp. Vol. 2004, in 4, al., Ateskan, Y. S. H. Kizilocak with non-operative inDARPA-JFACC of Proceedings the 2nd Control, 2000, Advances in Enterprise
0.81
Elsevier, and D. security: Surveys, vol.
ElsevierとD. Security: Surveys, vol。
0.75
S. Bernstein, and “Jamming anti– networks: survey,” A and Ubiquitous Com-
1283–1309, theoretic of battlefield Conference on (Allerton).
1283-1309, theoretic of battlefield conference on (allerton)。
0.75
S. Morris, robustness information,” Econometrica: Society,
s. morris, robustness information”. econometrica: society. (英語)
0.57
1997. of modeling cyber things,” in 2018 Communication, IEEE, pp.
1997. of modeling cyber things” in 2018 communication, ieee, pp.
0.78
defense,” Sensors, and Intelligence and Homeland Defense
防衛」と「情報」と「国土防衛」
0.62
adK. Hor´ak, Q. Zhu, approach to deception versary’s belief: A dynamic game in security,” design by network Proceedand Decision on Conference of ings the 2017, Springer, pp.
adK Hor ́ak, Q. Zhu, approach to deception bothry’s belief: A dynamic game in security” by network Proceedand Decision on Conference of ings the 2017 Springer, pp。
0.63
273– Game Theory 294.
273 - ゲーム理論294。
0.89
House J. T. cyber plied to SPIE Conference Communications, for Homeland 766604, May.
ハウスJ.T.は5月、ホームランド766604のSPIE会議通信にサイバー攻撃を仕掛けた。
0.60
games “Dynamic Zhu, Huang L. and cyber in for defensive adversarial AuSpringer, 2019, pp.
ゲーム “Dynamic Zhu, Huang L. and Cyber in for defense adversarial AuSpringer, 2019, pp.”。
0.95
75–97. tonomous Cyber Deception.
75–97. 悪質なサイバー詐欺だ
0.59
characterA. istics International Conference on Information Fusion (FUSION), 2018, pp.
キャラクタA。 Istics International Conference on Information Fusion (FUSION, 2018, pp。
0.72
1998–2005.
1998–2005.
0.71
A. Kajii and incomplete Econometric C. deception 56th Control, 862–862.
A. Kajii and incomplete Econometric C. deception 56th Control, 862–862。
0.82
Kandula, S. J. Padhye, enterprise Rev., vol.
Kandula, S. J. Padhye, enterprise Rev., vol。
0.95
Available: A. and media defenses,” Aug. C. foundations work 81–101.
とA.C.財団は81-101で活動している。
0.51
Butun, and I. Kocakulak M. towards networks less sensor 7th the Proceedings IEEE of Workshop Communication and IEEE, pp.
Butun, I. Kocakulak M. to network less sensor the 7th Proceedings IEEE of Workshop Communication and IEEE, pp。
0.85
1–6. A. Kott, A. Swami, Things,” T. Krueger, “Learning Proceedings artificial A. N. N. N. temporal on Decision 2020.
1–6. a. kott, a. swami, things”. t. krueger. “learning proceedings artificial a. n. n. temporal on decision 2020”。
0.70
A. N. Kulkarni, H. and for
A. N. Kulkarni, H. and for
0.86
“The and B. West, 2016.
とBは言う。 2016年、西。
0.68
Computer, Dec. IEEE and Kr¨amer, N. Gascon, H. honeypots,” network models stateful for ACM workshop on Security of the 5th 37–48.
computer, dec. ieee and kr samer, n. gascon, h. honeypots", network models stateful for acm workshop on security of the 5th 37–48。
0.79
pp. 2012, intelligence, C. F. Kulkarni, Luo, J. H. A.
pp. 2012年インテリジェンス c. f. kulkarni, luo, j. h. a.
0.82
“Decoy Leslie, placement games logic objectives,”
『Decoy Leslie, placement game logic objectives』
0.73
Mahajan, R. Bahl, and P. networks,” SIGCOMM 39, 4, pp.
mahajan, r. bahl, and p. networks”. sigcomm 39, 4, pp.
0.80
243–254, Aug. https://doi.org/10.1 145/1594977.1592597
243–254, Aug. https://doi.org/10.1 145/1594977.1592597
0.37
Stolfo, information for 8,819,825.
Stolfo, information for 8,819,825。
0.71
“Game-theoretic P´ıbil, netof honeypots Springer, pp.
ゲーム理論P ́ıbil, netof honeypots Springer, pp.
0.83
Patent 2014, US Lis`y, and R. Kiekintveld, V. the use strategic Cyber Warfare.
特許 2014 US Lis`y, and R. Kiekintveld, V. the use strategic Cyber Warfare.
0.83
in and graphs with International Conference Springer, for
イン そして国際会議 Springer のグラフは
0.62
Leslie, C. A. Kamhoua, graphs Letters,
Leslie, C. A. Kamhoua, Graphs Letters,
0.97
“An Internet Annual Conference
「インターネット年次会議」
0.76
labeling: Hypergames on Systems IEEE
ラベル付け:Hypergames on Systems IEEE
0.90
Agarwal, in Commun.
Agarwal, in Commun.
0.85
[Online]. “Systems, methods, trap-based
[オンライン] システム,メソッド,トラップベース
0.67
wirein and (CCWC).
wirein and (CCWC)。
0.76
J. for generating bait Things,” of Computing
餌生成用j コンピューティングの”もの”
0.59
“Deceptive deception,”
「偽りのデセプション」
0.45
P. Verkaik, “Detailed
P. Verkaik, “詳細は?
0.63
Kamhoua, on Rieck, in and
カムホア、オン Rieck (複数形 Riecks)
0.48
Comput. 2009.
Comput 2009.
0.67
for security,”
セキュリティのために”。
0.63
S. diagnosis J. Fu, stealthy
S.診断 J. Fu, stealthy
0.90
Internet of Battle
Internet of Battle
0.85
in Theory in 2015,
理論上 2015年には
0.75
Luo, N. O.
Luo, N. O。
0.95
Keromytis
Keromytis属
0.63
and Game overview of
ゲームは 概要 ですから
0.61
D. and S. Security.
d. そして S。 セキュリティ。
0.75
Control 2017, K.
制御 2017, K!
0.76
英語(論文から抽出)
日本語訳
スコア
[87] [88] [89]
[87] [88] [89]
0.85
[90] [91] [92]
[90] [91] [92]
0.85
[93] [94] [95]
[93] [94] [95]
0.85
[96] [97] [98]
[96] [97] [98]
0.85
[99] [100]
[99] [100]
0.85
+ J. in S.
+ J。 イン S。
0.74
Lu, and and
ル。 そして そして
0.66
Lee, Zhu, 2020.
Lee ズー 2020.
0.54
Zhao, “Cyber
Zhao 『サイバー』
0.47
preprint machine polluters
プレプリント 機械 汚染物質
0.65
Workshop deception
ワークショップ deception
0.77
learning,” MacFarland
学習”。 MacFarland
0.75
S. game Feng, for
sゲーム Feng (複数形 Fengs)
0.59
Internet 2016.
2016年インターネット。
0.84
arXiv:2007.14497,
arXiv:2007.14497,
0.50
“Game SDN,” for
ゲームSDN(Game SDN)
0.63
1025–1035, “Uncovering
1025–1035, “uncovering”
0.70
Lyon, C. Creating
Lyon, C. Creating
0.98
“Nmap website,” C.
略称は「nmap webサイト」。
0.66
SDN shufhost-based on
SDN shufhost-based
0.92
A long-term Proceedings on Weblogs
Weblogsの長期的成果
0.68
Target Defense, Zhang, S. L. dynamic based
Target Defense, Zhang, S. L. dynamic based
0.98
and H. “Dehoneypot-enabled of IEEE
そしてH. “Dehoneypot対応のIEEE
0.67
Conference Springer, M. D. theory.
学説、M.D.理論。
0.59
1. “Seven months with on content AAAI International Media, 2011, pp.
1. AAAI International Media, 2011, pp。
0.56
https://nmap.org/.
https://nmap.org/。
0.58
“The A. Shue, defense a moving-target using in networking,” ACM 37–41.
a. shue, defense a moving-target using in networking” acm 37-41。
0.81
pp. 2015, and Zhang, Y. mechanism defense Machine on 2019, pp.
pp. 2015年、Zhang, Y. Mechanism Defense Machine on 2019, pp。
0.82
Whinston, J. Oxford University
オックスフォード大学ウィンストン校
0.51
no. 3, pp. 6, social and S. Webb, in honeypots International ACM SIGIR Con33rd and Development Information 435–442.
ダメよ 3、p。 6 Social and S. Webb in honeypots International ACM SIGIR Con33rd and Development Information 435–442。
0.70
and J. Caverlee, of study the of 5th Social and
第5回社会科学研究会の j. caverlee は
0.65
2021. July, Jin, La, T. Q. Quek, Q. D. defense in and attack ceptive Internet-of-Things,” for the networks vol.
2021. 7月、jin, la, t. q. quek, q. d. defense in and attack ceptive internet-of-things” for the networks vol。
0.80
Journal, Things Caverlee, K. J. Lee, Social spammers: the Proceedings of Research on ference Retrieval, 2010, pp.
Journal, Things Caverlee, K. J. Lee, Social spammers: The Proceedings of Research on ference Retrieval, 2010, pp.
0.92
K. Lee, B. D. Eoff, devils: the Twitter,” in Conference 185–192.
K. Lee, B. D. Eoff, demons: the Twitter”. Conference 185–192
0.92
C. Z. for Wang, computer and network security: Survey and challenges,” arXiv G. D. fle: software-defined Moving D. Mao, theory in International Security.
C.Z. for Wang, computer and network security: Survey and Challenge” arXiv G.D. fle: Software-defined moving D. Mao, theory in International Security。
0.91
Cyber A. Mas-Colell, Microeconomic vol.
Cyber A. Mas-Colell, Microeconomic Vol. (英語)
0.57
1995, York, Sharmin, N. Miah, M. Anjum, M. intveld, W. H. Enck, M. P. Singh, using game vulnerability-driven honey traffic Artificial on Proceedings New York, Feb. for Cyber 1–7.
1995, York, Sharmin, N. Miah, M. Anjum, M. intveld, W. H. Enck, M. P. Singh, using game vulnerability-driven honey traffic Artificial on Proceedings New York, Feb. for Cyber 1-7.
0.90
Chan, S. Shen, K. S. Milani, W. F. and Kamhoua, C. Leslie, A. graph of power in attack deception on tional Conference Decision and Security.
Chan, S. Shen, K. S. Milani, W. F. and Kamhoua, C. Leslie, A. graph of power in attack deception on tional Conference Decision and Security
0.98
2020. Springer, A. Mohammadi, M. H. Manshaei, M. M. Moghaddam, of Q. game-theoretic and deception social networks using fake over in Proceedings International Conference of and Game the 382–394.
2020. Springer, A. Mohammadi, M. H. Manshaei, M. M. Moghaddam, of Q. game-theoretic and deception social networks using fake over in Proceedings International Conference of and Game the 382–394
0.89
Springer, Security.
Springer、Security。
0.78
Theory for and D. Montigny-Leboeuf “Passive time work discovery for real Research munications Centre 2004.
The Theory for and D. Montigny-Leboeuf “Passive time work discovery for real Research munications Centre 2004”。
0.89
Rep., S. S. “Behavioral oretic (GLOBECOM).
S.S. “Behavioral Oretic” (GLOBECOM) の略。
0.70
Conference C. S. S. Brahma, Njilla, On Development of Deception-Based Security.
C. S. S. Brahma, Njilla, on Development of Deception-Based Security
0.87
pp. analysis avatars,” on Decision 2016, pp.
pp. analysis avatars” on Decision 2016, pp.
0.81
F. Massicotte, netsituation awareness,” ComOttawa Tech.
f. massicotte, netsituation awareness”とcomottawa techは言う。
0.63
Leslie, theapproach,” in 2019 IEEE Global Communications
2019年のIEEE Global Communicationsの“Leslie, theapproach”
0.82
1–6. IEEE, 2019, L. A. L. Kamhoua, a Game-Theoretic Model for Wiley Online Library, 2020,
1–6. IEEE, 2019, L. A. L. Kamhoua, a Game-theoretic Model for Wiley Online Library, 2020
0.84
Kiek“Optimizing theory,” in Intelligence 2020, pp.
kiek “optimizing theory” in intelligence 2020, pp. (英語)
0.73
290–303. and R. Green, Press New
290–303. とR. Green, Press New
0.81
Kamhoua, deception: A game
kamhoua, deception:ゲーム
0.66
O. the Internafor
o. インターナール
0.49
Venkatesan, N. “Harnessing
Venkatesan, N. “Harnessing”
0.87
the Workshop (AICS),
ワークショップ(AICS)
0.48
and and prospect Brahma, cyber
そして将来は Brahma, サイバー
0.60
of Security games,” Game
セキュリティの Game (複数形 Games)
0.68
in Theory S. Fang,
理論上 S. Fang
0.73
pp. and (Ontario),
pp. そして (オンタリオ)
0.67
123–140. Learning
123–140. 学習
0.73
I. and Nan, Nan, Zhu, Zhu,
と。 南 南 ズー ズー
0.34
“A N. A. C.
「あ」 N! A。 C。
0.73
C. 28 N. of
C。 28 N! ですから
0.71
1, S. V. W.
1, S。 vだ W!
0.73
W. 14, and
W! 14, そして
0.72
vol. [106]
Vol. [106]
0.77
[105] [104]
[105] [104]
0.85
[103] [102]
[103] [102]
0.85
[101] Radio games
[101] ラジオ ゲーム
0.80
Mobile “Survey Pawlick,
移動 「サーベイ」 Pawlick
0.49
Bigelow, Streilein,
ビッグロー Streilein
0.46
defense,” 167–172.
防衛」。 167–172.
0.65
“Modeling Zhu, the in
「モデリング」 朱(いん)
0.64
on Defined E. patterns
定義上では E.パターン
0.71
C. network Brahma, of
c.ネットワーク Brahma (複数形 Brahmas)
0.69
C. A. jamming Network Networks
C.A.ジャミング ネットワークネットワーク
0.73
DeCusatis, attack
DeCusatis, attack
0.85
cloud: of adInterfor
cloud: adinterfor
0.64
Function (NFV-SDN).
機能(NFV-SDN)。
0.74
Farhang, signaling threats,”
Farhang, signaling threats”.
0.75
Conference Software pp.
コンファレンスソフトウェア pp。
0.66
and SDN the Virtualization IEEE,
そしてSDNは仮想化IEEEです。
0.55
and O. Kamhoua, via deception,” attacks International Symposium on Communications.
O. Kamhoua, via deception” は国際コミュニケーションシンポジウムを攻撃している。
0.82
“Mitigation IEEE 31st Annual and Indoor pp.
IEEE 31st Annual and Indoor pp。
0.62
2020, 1–6.
2020, 1–6.
0.84
F. Nanda, Zafari, Yang, “Predicting
f.nanda、zafari、yang、”予測”
0.70
network signaling for 2015. arXiv:1503.05458, Q. and games in
2015年のネットワークシグナリング:arxiv:1503.05458、q.、games in
0.52
the “Flip presence of Proceedings the and Game Theory on Decision 289–308.
flip presence of proceedings』と『game theory on decision 289–308』。
0.77
pp. 2015, and Q. and Colbert, Zhu, signaling using games with deception Information Forensics on pp.
pp. 2015年、Q. and Colbert, Zhu, signaling using game with deception Information Forensics on pp。
0.83
1871–1886,
1871–1886,
0.71
S. Nan, Leslie, in 2020 Personal, IEEE, S. Wedaa, B. in using machine learning approach,” in Proceedings of IEEE and 2016, H. Okhravi, M. A. Rabe, W. G. Leonard, T. R. Hobson, D. cyber moving targets,” Lexington Lincoln Lab, MIT, TR 1166, 2013.
S. Nan, Leslie, in 2020 Personal, IEEE, S. Wedaa, B. in using machine learning approach”. Proceedings of IEEE and 2016, H. Okhravi, M. A. Rabe, W. G. Leonard, T. R. Hobson, D. Cyber moving target”. Lexington Lincoln Lab, MIT, TR 1166, 2013.
0.98
J. Pawlick and Q. Zhu, “Deception by design: Evidencebased arXiv preprint S. J. Cyber-physical vanced persistent national Conference Springer, Security.
J.PawlickとQ. Zhuは、”Deception by design: Evidence based arXiv preprint S.J. Cyber-physicalは、永続的な国家会議Springer, Securityを台無しにした。
0.61
Pawlick, J. E. leaky analysis of evidence,” IEEE Transactions 2018.
Pawlick, J. E. leaky analysis of evidence”. IEEE Transactions 2018. IEEE Transactions.com
0.77
7, Security, no. and survey of deand [107] ——, taxonomy “A game-theoretic privacy,” and cybersecurity for deception fensive ACM no.
Peng, Leckie, T. and K. Ramamohanarao, network-based of mechanisms defense DDoS DoS and problems,” ACM 3–es, (CSUR), vol.
Peng, Leckie, T. and K. Ramamohanarao, network-based of mechanism Defense DDoS DoS and problems”. ACM 3-es, (CSUR), vol.
0.98
39, no. pp.
39位、ノー。 pp.
0.83
J. Chiang, L. H. Pham, M. Albanese, R. Chadha, C.-Y.
J. Chiang, L. H. Pham, M. Albanese, R. Chadha, C.-Y
0.85
“A quantitaand N. Leslie, S. Venkatesan, C. Kamhoua, stealthy tive reconnaissance by atin tackers 2020 IEEE Network Security L. Phlips, Cambridge University R. C. Lis`y, “Game M. eypot in of the Security.
A Quantitaand N. Leslie, S. Venkatesan, C. Kamhoua, stealthy tive reconnaissance by atin tackers 2020 IEEE Network Security L. Phlips, Cambridge University R. C. Lis`y, “Game M. eypot in of the Security”。
0.94
Theory S. Pinto, T. Gomes, “Iioteed: for ing, R. counters Proceedings of 2010.
理論 S. Pinto, T. Gomes, “Iioteed: for ing, R. counters Proceedings of 2010” と題する。
0.84
Aug. A. M. Rahman, M. “A game-theoretic approach for deceiving remote operating
A.M. Rahman, M. “リモート操作を欺くゲーム理論的アプローチ
0.80
deception-based Communications on pp.
deception-based Communications on pp。
0.78
2020, 1–9.
2020, 1–9.
0.84
IEEE, of imperfect economics Press, 1988. and Boˇsansk`y, B. Kiekintveld, strategic of theoretic model honnetworks,” in Proceedings and Game on Decision pp.
Proceedings and Game on Decision pp. ^ “IEEE, of imperfect Economics Press, 1988 and Bo'sansk`y, B. Kiekintveld, Strategy of theoretic model honnetworks”. Proceedings and Game on Decision pp. 訳抜け防止モード: IEEE, of imperfect Economics Press, 1988, and Bo'sansk`y. B. Kiekintveld, Strategy of theoretic model honnetworks, ” in Proceedings and Game on Decision pp。
0.88
2012, 201–220.
2012, 201–220.
0.84
J. Cabral, and A. Tavares, execution environment IEEE Internet Comput2017.
J. Cabral、A. Tavares、実行環境IEEE Internet Comput2017。
0.87
P´ıbil, Pˇechouˇcek, selection International Conference Springer, for J. Pereira, trusted devices,” 40–47,
j. pereira氏のためのselection international conference springer, for j. pereira, trusted devices” 40-47。
0.69
enhanced, An edge iot industrial 1, vol.
拡張、エッジiot産業1、vol.1。
0.60
no. pp. 21, Poovendran, “Cyber-Physical two between IEEE, the
ダメよ pp. 21poovendran, “ieeeとtheの間のサイバフィジカルな2つ”
0.64
Systems: [point parallel worlds 8, no.
システム: [point parallel worlds 8, no。
0.82
pp. and support Conference (CNS).
pp. 支援会議(CNS)を開催。
0.77
The enClose of view],” 1363–1366,
1363-1366,
0.30
“Survey the Surveys Computing 2007.
「調査」 2007年コンピューティング。
0.64
defenses,” and H. Manshaei,
防衛」、そして H.manshaei
0.60
information. framework
情報だ フレームワーク
0.66
countering
countering~
0.72
Al-Shaer, computer
Al-Shaer コンピュータ
0.75
to model [108]
モデルに [108]
0.81
[109] [110]
[109] [110]
0.85
[112] [114]
[112] [114]
0.85
[113] [111]
[113] [111]
0.85
vol. and 98,
Vol. そして 98,
0.75
C. E.
C。 e.
0.73
英語(論文から抽出)
日本語訳
スコア
[115] [116]
[115] [116]
0.85
[117] [118]
[117] [118]
0.85
[119] [120]
[119] [120]
0.85
[121] [122]
[121] [122]
0.85
[123] [124]
[123] [124]
0.85
[125] [126]
[125] [126]
0.85
[127] [128]
[127] [128]
0.85
J. in S. and
J。 イン S。 そして
0.70
vol. and for Proceedings
Vol. そして 経過
0.52
Introduction Sayin for to Cyberdecep-
はじめに さよなら サイバーデデデプへ-
0.46
fingerprinting,” P. learning
指紋認証” P.学習
0.70
“Fake Proc.
「フェイク・プロクター」。
0.33
2006, “A survey Attack
2006, 『調査攻撃』
0.77
S. Hershkop, detection
S. Hershkop, detection
0.98
pp. Sharma, network
pp. Sharma, Network
0.84
Y.-S. Issues, Sciences, Prince, “Enabling IEEE
Y.S.問題、科学 Prince, “IEEEの導入”
0.67
the of IEEE Security Network
ieeeセキュリティネットワークの現状
0.60
Jeong, and challenges, vol. 421,
と挑戦している。 421,
0.64
Stolfo, in Insider 69–90.
Stolfo, Insider 69-90。
0.82
pp. applications pro271–
pp. pro271-
0.75
J. Rrushi, and 2016.
J.Rrushi、2016年。
0.85
Springer, B. Rowe, T.
Springer, B. Rowe, T。
0.92
attack Springer, Security.
Springer, Security を攻撃します。
0.71
and T. Bas¸ar, cyber-physical
そしてサイバー物理のT. Bas sar
0.51
and J. research,” 2008, “Deception-as-defense systems,” preprint
IEEE, V. P. Loia, K. security: “Social solutions,” Information 2017.
IEEE, V.P. Loia, K. Security: “Social Solution”, Information 2017
0.84
Rathore, Park, and 43–69, P. C. Rodrigues, D. B.
Rathore, Park, and 43-69, P. C. Rodrigues, D. B。
0.83
De Rezende Segundo, H. A. J. Al-Muhtadi, technologies Access, 6,
De Rezende Segundo, H. A. J. Al-Muhtadi, Technology Access, 6。
0.83
system Conference (CNS).
システム会議(CNS)。
0.72
S. J. H. threats, pp.
S. J. H. threats, pp。
0.83
J. J. Sabino, R. M. Junqueira, M. H. Albuquerque, V. De H. and C. the of for internet health things,” 13 129–13 141, pp.
J.J. Sabino、R.M. Junqueira、M.H. Albuquerque、V.D.、C.はインターネットの健康上の問題に対処している。 訳抜け防止モード: J. J. Sabino, R. M. Junqueira, M. H. Albuquerque V.D.H.とC.は、インターネットの健康のためにある。 13 129–13 141 , pp .
0.80
2018. on issue “Special Foster, K. and Ron discovery knowledge the of machine and Learning, cess,” vol.
2018. “Special Foster, K. and Ron discovery knowledges of machine and Learning, cess”. Vol. 2018. 2018.
0.79
30, pp. Journal of Machine 274, 1998.
pp. 30。 雑誌『マシン274』、1998年。
0.76
N. C. Rowe tion. Custy, E. Duong, N. C. tactic honeypots: A defensive in cyberspace,” Information Assurance, the of on IEEE Workshop 223–230.
N.C.ロー。 custy, e. duong, n. c. tactic honeypots: a defensive in cyberspace”. information assurance, the of on ieee workshop 223–230. 英語) 訳抜け防止モード: N.C.ロー。 Custy, E. Duong, N. C. tactic honeypots : a defense in Cyberspace”. IEEE Workshop 223-230における情報保証。
0.78
pp. B. M. Salem, of insider Cyber and M. O. framework 2019. arXiv:1902.01364, F. Xu, Fang, M. Thakoor, H. Schlenker, O.
pp. b.m. salem, of insider cyber and m. o. framework 2019. arxiv:1902.01364, f. xu, fang, m. thakoor, h. schlenker, o。 訳抜け防止モード: pp. インサイダーCyberとM.O.フレームワーク2019のB.M. Salem氏。 arXiv:1902.01364, F. Xu, Fang, M. Thakoor, H. Schlenker,O。
0.79
A. Y. P. Tran-Thanh, L. and Vorobeychik, Vayanos, ceiving adversaries: A game cyber theoretic in International Proceedings on Autonomous ternational Multiagent W. Sharp, L. Doctrine Center, 3-13.4, port 2006.
A. Y. P. Tran-Thanh, L. and Vorobeychik, Vayanos, ceiving adversaries: A game cybertheoretics in International Proceedings on autonomous ternational Multiagent W. Sharp, L. Doctrine Center, 3-13.4, port 2006
0.91
S. Venkatesan, Chan, Z. R. Shi, A. D. Leslie, C. Kamhoua, and Fang, F. N. Ben-Asher, N. O.
S. Venkatesan, Chan, Z. R. Shi, A. D. Leslie, C. Kamhoua, Fang, F. N. Ben-Asher, N. O。
0.84
“Learning in games,” deception International Conference on Decision and Game Theory 2020. for games: R. obfuscation,” Proceedings on nologies, no.
ゲームを学ぶこと、ゲーム理論に関する虚偽国際会議、そしてゲーム理論に関する2020年。ゲーム:R. obfuscation”, Proceedings on nology, No.
0.82
2, pp. deep Shmatikov, R. Shokri learning,” SIGSAC of Conference on Computer and Communications Security, 2015, Snijders, C. Big gaps of International pp.
2、p。 deep shmatikov, r. shokri learning”. sigsac of conference on computer and communications security, 2015 snijders, c. big gaps of international pp. (英語)
0.71
2012. 1–5, Song, H. J. Nakao, K. building of Proceedings of
2012. 1-5, Song, H. J. Nakao, K. Building of Proceedings of Proceedings
0.79
Takakura, Y. Okabe, M. Eto, D. and analysis of “Statistical honeypot and 2006+ dataset kyoto for nids in on Building Analysis the First Workshop
高倉y.岡部, m. eto, d. and analysis of "statistical honeypot and 2006+ dataset kyoto for nids in on building analysis the first workshop
0.83
Optimal Privacy 299–315, “Privacy-preserving the
プライバシー保護に最適な299–315
0.73
1310–1321.
1310–1321.
0.71
U.-D. and U. Matzat, in knowledge field the Internet of Journal
u.d. と u. matzat, in knowledge field the internet of journal
0.73
17th and MultiAgent Autonomous for 2018, pp.
17th and MultiAgent Autonomous for 2018, pp.
0.94
892–900. Tambe, “Deapproach,” Conference Inand
892–900. Tambe, “Deapproach”, Conference inand
0.72
of the Agents Foundation Systems,
エージェント・ファウンデーション・システム」です
0.57
Reips, Internet of Science, vol.
英語) reps, internet of science, vol.
0.71
2015, V. Proceedings
2015年v.プロシージャ
0.75
Joint War-Fighting Re-
複合戦力リフレッシュ-
0.54
Inoue, data evaluation,” user-centric Enhancing 2015.
井上、データ評価」 ユーザー中心の2015年。
0.60
data”: science,” 7, 1,
Data”: Science”, 7, 1,
0.75
deception,” Education Systems.
だま」教育 システム。
0.65
Agents “Military and
エージェント 「軍事的」
0.67
Security. Shokri,
セキュリティ。 松栗
0.51
vol. and in Procaccia, K.
Vol. そして プロカシア、K。
0.56
data Tech- Technical Springer,
データ技術- 技術 Springer
0.68
planning “Privacy
計画 「プライバシー」
0.73
Group, feature arXiv
グループ 特徴 arXiv
0.66
““big ACM 22nd
“Big” ACM 第22回
0.67
and pp. no.
そして pp. ダメよ
0.71
S. in Xu, camouflage
S。 イン Xu, camouflage
0.73
H. C. games Conference
H! C.ゲーム会議
0.79
Kiekfor on Springer,
Kiekfor on Springer,
0.85
Security. games in Theory
セキュリティ。 理論上のゲーム
0.78
for and G. Deucyber International Security.
ですから G. Deucyber International Securityの略。
0.64
for S. Serrano, sophisticated International Conpp.
ですから S.Serrano、高度な国際会議。
0.54
IEEE, 2014,
IEEE 2014,
0.69
“Self al., adaptive game theory,” in Springer, 2009,
『自分』 アダプティブゲーム理論(adaptive game theory)は、2009年春に発表された。
0.56
Y. Zhu, M. Mohanlal, and turf: Crowdturfing in Internathe of Proceedings on World Wide Web.
Y. Zhu, M. Mohanlal, and turf: Crowdturfing in Internathe of Proceedings on World Wide Web
0.85
2012, 21st ACM,
2012, 21st ACM。
0.85
29 for Secu-
29 ですから セキュ
0.60
Returns Trapping 2, no.
返却 トレーディング2、ノー。
0.59
1, the pp. hack15–23,
1, pp. Hack15–23。
0.66
Kruegel, and G. Vigna, networks,” in Proceedings Security Applications 1–9.
kruegel, and g. vigna, networks” in proceedings security applications 1–9。
0.81
An Introduction. “Detecting of The Confer-
安 はじめに。 「参照の検知」
0.55
Princeton for
プリンストン ですから
0.56
[135] [134]
[135] [134]
0.85
[133] [132]
[133] [132]
0.85
[130] [131]
[130] [131]
0.85
[129] Vayanos,
[129] ヴァヤノス
0.69
honeynet and Game
ハニーネット ゲームは
0.57
Kamhoua, interaction Experience
カムホア 相互作用 経験
0.64
project: vol.
プロジェクト:vol.
0.69
Gathering 29–36. and pp.
29-36頁。 そしてpp。
0.52
“The A. stochastic process,”
『The』 A.tochastic process”.
0.70
Hayel, C. observable epidemic
Hayel (複数形 Hayels)
0.51
Stringhini, on Annual ACM,
stringhini, on annual acm,
0.72
Game Press, Thakoor, M. F.
Game Press, Thakoor, M. F.
0.94
C. social Computer pp.
C. Social Computer pp。
0.92
2010, Theory: 2013.
2010年、理論:2013年。
0.77
P. Tambe, “Cyber Fang, and in deception,” International and Game Theory 525–541.
P. Tambe, “Cyber Fang, and in deception”, International and Game Theory 525–541
S. Tadelis, University O. intveld, strategic Decision 2019, pp.
S. Tadelis, University O. intveld, Strategy Decision 2019, pp.
0.95
Tsemogne, Y. O.
Tsemogne, Y. O。
0.94
“Partially goue, against deception on Decision Conference 2020.
決定会議2020の偽装に反対する意見もある。
0.59
Springer, Vanautgaerden, B. Virvilis, N. and O. the “Changing game: The of art deceiving attackers,” in Proceedings the of 6th (CyCon).
Springer, Vanautgaerden, B. Virvilis, N. and O. The Changing game: The of art deceiving attackers”. Proceedings the 6th (CyCon)
0.77
ference On Conflict Cyber 87–97.
コンフリクトサイバー87-97を参照。
0.54
G. Wagener, A. Dulaunoy, T. Engel et high driven by Symposium on Self-Stabilizing Systems.
G. Wagener, A. Dulaunoy, T. Engel et High driven by Symposium on Self-Stabilizing Systems
0.92
pp. C. Wilson, X. G. Wang, and B. Y. Zhao, H. Zheng, and for profit,” fun tional Conference pp.
pp. C. Wilson, X. G. Wang, B. Y. Zhao, H. Zheng, and for profit”. fun tional Conference pp。
0.89
S. X. tion Access, B. C. J. Martin, moving tory B. Whitham, honeyfiles to in Information Systems Conference (MilCIS).
S. X. tion Access, B. C. J. Martin, moving tory B. Whitham, honeyfiles to in Information Systems Conference (MilCIS)。
0.93
pp. 1–6. [140] ——, “Automating the high-interaction for tent Hawaii the 50th 2017.
pp. 1–6. 2017年5月50日、ハワイのテントでハイアクションを自動化。
0.70
Sciences, B. and C. A. Xi fense Toward Strategy Battlefield Things pp.
科学、B.A.Xi Fense towards Strategy Battlefield Things pp.
0.65
J. counter-learning
J.カウンターラーニング
0.53
679–688. Pei, Wang, Q. intelligent Liu, “An on based resources 35 792–35 804, 8, vol.
679–688. Pei, Wang, Q. Intel Liu, “An on based resources 35 792–35 804, 8, vol.”。
0.82
pp. S. Ward, R. Gomez, and H. Okhravi, Landry, J. edition,” MIT targets second Tech.
pp. MITは“S. Ward, R. Gomez, and H. Okhravi, Landry, J. edition”をターゲットとしている。
0.78
Lexington United States, paradoxes “Minimising data combat theft Military the
Lexington United States, paradoxs “Minimising data combat theft Military The”
0.90
deployment reinforcement 2020. Skowyra,
2020年配備強化 Skowyra
0.57
“Modeling costly defender-attacker
改造費用のかかる守備隊
0.43
generation of honeyfiles,”
ハニーファイルの生成”。
0.61
Kamhoua, Cyber
Kamhoua, Cyber
0.85
Zhuang, a
Zhuang (複数形 Zhuangs)
0.40
59–77. Xu and
59–77. XU と XU
0.62
Zhao, “Serf
Zhao, “Serf
0.85
International Proceedings honeypots
国際 経過 ハニーポット
0.55
741–755. (IoBT).
741–755. (IoBT)。
0.72
Wang, Tang, [142]
Wang 唐 [142]
0.58
[138] [139]
[138] [139]
0.85
[136] [137]
[136] [137]
0.85
[141] G. R.
[141] g. R。
0.79
in of J.
イン ですから J。
0.62
J. Zhang, Y. policy for learning,”
J。 Zhang, Y. Policy for Learning” だ。
0.81
and decepIEEE
そしてdeepIEEE
0.61
Bigelow, of cyber Labora-
Bigelow, of Cyber Labora-
0.97
D. “Survey Lincoln 2018.
D. “Survey Lincoln 2018”を参照。
0.62
Rep., when employing networks,” in military and Communications IEEE, 2016,
rep., when employing networks” in military and communications ieee, 2016 (英語)
0.68
enticing in
enticing + -ing
0.30
text Proceedings
Text Proceedings
0.82
conof System Conference
conofシステム 講演会
0.66
on A Hypergame-Based Internet Deception
オン ハイパーゲームに基づくインターネットデセプション
0.64
in Wiley Online Library,
イン Wiley Online Library
0.59
Deof 2020, learning with game
2020年。 ゲームで学ぶこと
0.75
and pri-
pri-
0.61
英語(論文から抽出)
日本語訳
スコア
Re- 30 [143]
再会 30 [143]
0.77
pp. Zhang, [148]
pp. Zhang [148]
0.74
Yuill, M. [149]
Yuill M。 [149]
0.69
and techniques,”
そして テクニック”だ。
0.67
opPh.D. of and of
opPh.D. と ですから
0.58
[144] [145]
[144] [145]
0.85
[146] [147]
[146] [147]
0.85
of code: 7th State University,
コード:7番目 州立大学。
0.76
2006. F. and Feer, detection,”
2006. f. Feer, detection” です。
0.75
Annual ACM, Computer 2014, pp.
年次ACM。 コンピュータ2014年、p。
0.72
techniques: International Com-
技術:国際マンション-
0.77
J. Zhuang, games: AAAI
J.Zhuang、ゲーム:AAAI
0.81
“Optimal preliminary on A Conference
『最適予備』 講演会
0.53
taste tweets: in Proceedings Applications
taste tweets: 手続きアプリケーションで
0.75
of Broadband, Wireless Applications, 2010,
ブロードバンド, 無線アプリケーション, 2010
0.54
security of the 2013.
2013年のセキュリティ。
0.69
“Malware Proceedings
『マルウェア・プロシージャ』
0.54
defender information,” vate of Annals Operations 1, 271–289, pp.
en:vate of annals operations 1, 271-289, pp。
0.38
vol. 236, no.
Vol. 背番号236。
0.58
2016. search, oband F. Zhang, S. Zhu, “The power W. Xu, A JavaScript malicious in techniques fuscation study,” in measurement the Proceedings InConference Unwanted on Malicious ternational 2012, 9–16.
2016年、 search, oband f. zhang, s. zhu, “the power w. xu, a javascript malicious in techniques fuscation study” が悪質なternational 2012 9–16で不必要な手続きを計測した。
0.76
Software, G. J.
ソフトウェア、G.J。
0.89
“A Gu, and C. Yang, spammers,” engineering Twitter Reverse Security of 30th the Conference.
A Gu, and C. Yang, spammers, Engineering Twitter Reverse Security of 30th the Conference”. Twitter.com
0.85
86–95. Y. Yin, B.
86–95. Y, Yin, B。
0.80
An, Y. Vorobeychik, and strategies in deceptive study,” in Proceedings Intelligence, Artificial obfuscation Yim, and You I. K. survey,” A brief in the Computing, on Conference pp.
a b “as, y. vorobeychik, and strategies in deceptive study” in proceedings intelligence, artificial obfuscation yim, and you i.k. survey” in the computing pp. (英語) 訳抜け防止モード: An, Y. Vorobeychik, and Strategy in deceptive study, ” in Proceedings Intelligence, 人工難読化Yim, and You I. K. Survey, ”A brief in the Computing, on Conference pp.
0.87
297–300. munication and computer-security deception “Defensive J. J. Yuill, principles erations: Processes, Carolina dissertation, North Denning, D. “HonJ.
297–300. ムニシエーションとコンピュータセキュリティのデセプション “defensive j. j. yuill, principles erations: processes, carolina dissertation, north denning, d. “honj”。
0.75
Zappe, for files intrusion in eyfiles: Deceptive Prothe 5th Annual IEEE Information Assurance ceedings of 116–122.
Zappe, for file intrusion in eyfiles: Deceptive Prothe 5th Annual IEEE Information Assurance ceedings of 116–122。
0.92
2004, Workshop, pp.
2004年、工房、p。
0.69
F. Denning, Yuill, J. Feer, and D. Processes, from hackers: to hide things techniques,” Information Journal 3, no.
F. Denning, Yuill, J. Feer, D. Processes, from Hacker: to hide things techniques”. インフォメーション・ジャーナル3.
0.80
pp. M. v3. Zalewski.
pp. M3。 Zalewski
0.65
https://lcamtuf.core dump.cx/p0f3/ D. S. Tipper, T. defense distributed vice Surveys 2013.
https://lcamtuf.core dump.cx/p0f3/D.S. Tipper, T. Defense Distributed Vice Surveys 2013
0.57
T. Zhang, Z.
T.Zhang, Z。
0.83
He, learning through data chine 2018. arXiv:1807.01860, Hipel, K. W. X.
2018. arXiv:1807.01860, Hipel, K. W. X。
0.76
B. resource for theoretic model efforts,” and defense Systems 2019. no.
b.「理論モデルの取り組みのための資源」と「防衛システム2019」。
0.68
282–291, 3, pp.
282-291, 3, pp。
0.72
against “Fighting Zhu, H. honeypots,” active by using 2015.
2015年の “Fighting Zhu, H. honeypots” に対抗。
0.71
Libraries, University Bas¸ar, T. Poovendran, A. Q. and R. Zhu, Clark, in Proceedings of ceptive routing games,” the 51st (CDC).
図書館、バス・ザール大学、t. poovendran, a. q. and r. zhu, in proceedings of ceptive routing games”. the 51st (cdc) 訳抜け防止モード: 図書館, バス・ザール大学, T. Poovendran, A. Q., R. Zhu Clark, Proceedings of ceptive routing game, ”the 51st (CDC )。
0.88
on Conference and Decision 2704–2711.
会議と決定2704-2711。
0.66
pp. 2012, “Deployment [156] ——, and networks,” eybots in social Conference IEEE on 212–219.
pp. 2012年 “deployment [156]———, and networks” eybotsは212-219でソーシャルカンファレンスieeeで講演した。
0.81
2013, pp. Zargar, mechanisms flooding Tutorials,
2013年、p。 zargar, mechanism flooding tutorials,
0.76
“A denial survey of of serCommunications pp.
「否定」 調査 セルコミュニケーション pp.
0.52
2046–2069,
2046–2069,
0.71
“Privacy-preserving mapreprint Ge, Y. allocation
『職業保存地図』 Ge, Y 割り当て
0.56
Tan, with Engineering,
タン(Tan) - 工学。
0.50
spammers Twitter dissertation, McGill
スパマーズTwitterの論文、McGill
0.61
“Using principles, vol.
「利用」 原則、Vol.
0.57
Warfare, deception and 5, in Decision
戦争だ 偽装と5 in decision
0.58
Proceedings and of Control. and against attacks,” vol.