Bohmian Mechanics at Space-Time Singularities. I. Timelike Singularities
- URL: http://arxiv.org/abs/0708.0070v3
- Date: Fri, 29 Nov 2024 11:03:24 GMT
- Title: Bohmian Mechanics at Space-Time Singularities. I. Timelike Singularities
- Authors: Roderich Tumulka,
- Abstract summary: We develop an extension of Bohmian mechanics to a curved background space-time containing a singularity.
We are interested in the case in which particles have positive probability to hit the singularity and get annihilated.
As the resulting theory involves particle creation and annihilation, it can be regarded as a quantum field theory.
- Score: 0.0
- License:
- Abstract: We develop an extension of Bohmian mechanics to a curved background space-time containing a singularity. The present paper focuses on timelike singularities. We use the naked timelike singularity of the super-critical Reissner-Nordstrom geometry as an example. While one could impose boundary conditions at the singularity that would prevent the particles from falling into the singularity, we are interested here in the case in which particles have positive probability to hit the singularity and get annihilated. The wish for reversibility, equivariance, and the Markov property then dictates that particles must also be created by the singularity, and indeed dictates the rate at which this must occur. That is, a stochastic law prescribes what comes out of the singularity. We specify explicit equations of a model involving an interior-boundary condition on the wave function at the singularity, which can be used also in other versions of quantum theory besides Bohmian mechanics. As the resulting theory involves particle creation and annihilation, it can be regarded as a quantum field theory, and the stochastic process for the Bohmian particles is analogous to Bell-type quantum field theories.
Related papers
- How a Space-Time Singularity Helps Remove the Ultraviolet Divergence Problem [0.0]
Particle creation terms in quantum Hamiltonians are usually ultraviolet divergent and thus mathematically ill defined.
Previous papers showed that this approach works in the non-relativistic regime, but particle creation is mostly relevant in the relativistic case after all.
We prove rigorously the existence of well-defined, self-adjoint Hamiltonians with particle creation at the singularity, based on interior-boundary conditions.
arXiv Detail & Related papers (2024-09-01T09:41:02Z) - Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.
We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Particle exchange statistics beyond fermions and bosons [12.031278034659872]
It is commonly believed that there are only two types of particle exchange statistics in quantum mechanics, fermions and bosons.
We show that non parastatistics inequivalent to either fermions or bosons can exist in physical systems.
arXiv Detail & Related papers (2023-08-09T19:51:07Z) - An ontological description for relativistic, massive bosons [0.0]
Locality holds for the quantum theory, and seems to be fully obeyed also by the classical treatment.
We do discuss extensively the distinction between the quantum treatment and the classical one, even though they produce exactly the same equations mathematically.
It is suggested to apply this theory for real time quantum model simulations.
arXiv Detail & Related papers (2023-06-16T14:53:02Z) - Contextual unification of classical and quantum physics [0.0]
We develop the idea that the usual formalism of quantum mechanics stops working when countable infinities of particles are encountered.
This is because the dimension of the corresponding Hilbert space becomes uncountably infinite, leading to the loss of unitary equivalence.
We show that it provides a natural way to describe the "Heisenberg cut", as well as a unified mathematical model including both quantum and classical physics.
arXiv Detail & Related papers (2022-09-03T16:51:19Z) - Countering a fundamental law of attraction with quantum wavepacket
engineering [0.0]
Bohmian mechanics was designed to give rise to predictions identical to those derived by standard quantum mechanics.
We show that this interpretation of quantum theory naturally leads to the derivation of interesting new phenomena.
Specifically, we demonstrate how the fundamental Casimir-Polder force, by which atoms are attracted to a surface, may be temporarily suppressed by utilizing a specially designed quantum potential.
arXiv Detail & Related papers (2021-01-27T13:24:43Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Generic singularity of general relativity and its quantum fate [0.0]
Quantization of this scenario leads, however, to regular quantum evolution.
It could be used to address issues such as the quantum fates of cosmological and black holes singularities.
arXiv Detail & Related papers (2020-06-09T13:27:59Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.