Deep Feature Consistent Variational Autoencoder
- URL: http://arxiv.org/abs/1610.00291v2
- Date: Wed, 20 Mar 2024 13:41:19 GMT
- Title: Deep Feature Consistent Variational Autoencoder
- Authors: Xianxu Hou, Linlin Shen, Ke Sun, Guoping Qiu,
- Abstract summary: We present a novel method for constructing Variational Autoencoder (VAE)
Instead of using pixel-by-pixel loss, we enforce deep feature consistency between the input and the output of a VAE.
We also show that our method can produce latent vectors that can capture the semantic information of face expressions.
- Score: 46.25741696270528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel method for constructing Variational Autoencoder (VAE). Instead of using pixel-by-pixel loss, we enforce deep feature consistency between the input and the output of a VAE, which ensures the VAE's output to preserve the spatial correlation characteristics of the input, thus leading the output to have a more natural visual appearance and better perceptual quality. Based on recent deep learning works such as style transfer, we employ a pre-trained deep convolutional neural network (CNN) and use its hidden features to define a feature perceptual loss for VAE training. Evaluated on the CelebA face dataset, we show that our model produces better results than other methods in the literature. We also show that our method can produce latent vectors that can capture the semantic information of face expressions and can be used to achieve state-of-the-art performance in facial attribute prediction.
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Adversarial Masking Contrastive Learning for vein recognition [10.886119051977785]
Vein recognition has received increasing attention due to its high security and privacy.
Deep neural networks such as Convolutional neural networks (CNN) and Transformers have been introduced for vein recognition.
Despite the recent advances, existing solutions for finger-vein feature extraction are still not optimal due to scarce training image samples.
arXiv Detail & Related papers (2024-01-16T03:09:45Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Probabilistic Tracking with Deep Factors [8.030212474745879]
We show how to use a deep feature encoding in conjunction with generative densities over the features in a factor-graph based, probabilistic tracking framework.
We present a likelihood model that combines a learned feature encoder with generative densities over them, both trained in a supervised manner.
arXiv Detail & Related papers (2021-12-02T21:31:51Z) - Attribution Mask: Filtering Out Irrelevant Features By Recursively
Focusing Attention on Inputs of DNNs [13.960152426268769]
Attribution methods calculate attributions that visually explain the predictions of deep neural networks (DNNs) by highlighting important parts of the input features.
In this study, we use the attributions that filter out irrelevant parts of the input features and then verify the effectiveness of this approach by measuring the classification accuracy of a pre-trained DNN.
arXiv Detail & Related papers (2021-02-15T04:12:04Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.