Attention Is All You Need
- URL: http://arxiv.org/abs/1706.03762v7
- Date: Wed, 2 Aug 2023 00:41:18 GMT
- Title: Attention Is All You Need
- Authors: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin
- Abstract summary: We propose a new simple network architecture, the Transformer, based solely on attention mechanisms.
Experiments on two machine translation tasks show these models to be superior in quality.
- Score: 36.87735219227719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks in an encoder-decoder configuration. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer, based
solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to be
superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014
English-to-German translation task, improving over the existing best results,
including ensembles by over 2 BLEU. On the WMT 2014 English-to-French
translation task, our model establishes a new single-model state-of-the-art
BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction
of the training costs of the best models from the literature. We show that the
Transformer generalizes well to other tasks by applying it successfully to
English constituency parsing both with large and limited training data.
Related papers
- Efficient Machine Translation with a BiLSTM-Attention Approach [0.0]
This paper proposes a novel Seq2Seq model aimed at improving translation quality while reducing the storage space required by the model.
The model employs a Bidirectional Long Short-Term Memory network (Bi-LSTM) as the encoder to capture the context information of the input sequence.
Compared to the current mainstream Transformer model, our model achieves superior performance on the WMT14 machine translation dataset.
arXiv Detail & Related papers (2024-10-29T01:12:50Z) - Speculative Decoding with Big Little Decoder [108.95187338417541]
Big Little Decoder (BiLD) is a framework that can improve inference efficiency and latency for a wide range of text generation applications.
On an NVIDIA T4 GPU, our framework achieves a speedup of up to 2.12x speedup with minimal generation quality degradation.
Our framework is fully plug-and-play and can be applied without any modifications in the training process or model architecture.
arXiv Detail & Related papers (2023-02-15T18:55:29Z) - Pre-Training a Graph Recurrent Network for Language Representation [34.4554387894105]
We consider a graph recurrent network for language model pre-training, which builds a graph structure for each sequence with local token-level communications.
We find that our model can generate more diverse outputs with less contextualized feature redundancy than existing attention-based models.
arXiv Detail & Related papers (2022-09-08T14:12:15Z) - Improving Neural Machine Translation by Bidirectional Training [85.64797317290349]
We present a simple and effective pretraining strategy -- bidirectional training (BiT) for neural machine translation.
Specifically, we bidirectionally update the model parameters at the early stage and then tune the model normally.
Experimental results show that BiT pushes the SOTA neural machine translation performance across 15 translation tasks on 8 language pairs significantly higher.
arXiv Detail & Related papers (2021-09-16T07:58:33Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task.
We trained our models with the officially provided ASR and MT datasets.
To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning.
arXiv Detail & Related papers (2021-07-24T09:53:34Z) - Very Deep Transformers for Neural Machine Translation [100.51465892354234]
We show that it is feasible to build standard Transformer-based models with up to 60 encoder layers and 12 decoder layers.
These deep models outperform their baseline 6-layer counterparts by as much as 2.5 BLEU.
arXiv Detail & Related papers (2020-08-18T07:14:54Z) - Learning Source Phrase Representations for Neural Machine Translation [65.94387047871648]
We propose an attentive phrase representation generation mechanism which is able to generate phrase representations from corresponding token representations.
In our experiments, we obtain significant improvements on the WMT 14 English-German and English-French tasks on top of the strong Transformer baseline.
arXiv Detail & Related papers (2020-06-25T13:43:11Z) - Neural Machine Translation with Joint Representation [42.491774594572725]
Recent Neural Machine Translation (NMT) systems resort to the attention which partially encodes the interaction for efficiency.
In this paper, we employ Joint Representation that fully accounts for each possible interaction.
We sidestep the inefficiency issue by refining representations with the proposed efficient attention operation.
arXiv Detail & Related papers (2020-02-16T09:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.