Blended Conditional Gradients: the unconditioning of conditional gradients
- URL: http://arxiv.org/abs/1805.07311v4
- Date: Fri, 21 Mar 2025 11:03:00 GMT
- Title: Blended Conditional Gradients: the unconditioning of conditional gradients
- Authors: Gábor Braun, Sebastian Pokutta, Dan Tu, Stephen Wright,
- Abstract summary: We present a blended conditional gradient approach for minimizing a smooth convex function over a polytope P.<n>We achieve linear convergence for strongly convex functions, along with good practical performance.<n>The algorithm is lazy, making use of inexpensive inexact solutions of the linear programming subproblem.
- Score: 21.157733932548695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a blended conditional gradient approach for minimizing a smooth convex function over a polytope P, combining the Frank--Wolfe algorithm (also called conditional gradient) with gradient-based steps, different from away steps and pairwise steps, but still achieving linear convergence for strongly convex functions, along with good practical performance. Our approach retains all favorable properties of conditional gradient algorithms, notably avoidance of projections onto P and maintenance of iterates as sparse convex combinations of a limited number of extreme points of P. The algorithm is lazy, making use of inexpensive inexact solutions of the linear programming subproblem that characterizes the conditional gradient approach. It decreases measures of optimality (primal and dual gaps) rapidly, both in the number of iterations and in wall-clock time, outperforming even the lazy conditional gradient algorithms of [arXiv:1410.8816]. We also present a streamlined version of the algorithm for the probability simplex.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Efficient Gradient Approximation Method for Constrained Bilevel
Optimization [2.0305676256390934]
Bilevel optimization has been developed with large-scale high-dimensional data.
This paper considers a constrained bilevel problem with convex and non-differentiable approximations.
arXiv Detail & Related papers (2023-02-03T19:34:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - A conditional gradient homotopy method with applications to Semidefinite Programming [1.3332839594069592]
homotopy-based conditional gradient method for solving convex optimization problems with a large number of simple conic constraints.<n>Our theoretical complexity is competitive when confronted to state-of-the-art SDP, with the decisive advantage of cheap projection-frees.
arXiv Detail & Related papers (2022-07-07T05:48:27Z) - Constrained and Composite Optimization via Adaptive Sampling Methods [3.4219044933964944]
The motivation for this paper stems from the desire to develop an adaptive sampling method for solving constrained optimization problems.
The method proposed in this paper is a proximal gradient method that can also be applied to the composite optimization problem min f(x) + h(x), where f is convex (but not necessarily differentiable)
arXiv Detail & Related papers (2020-12-31T02:50:39Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Conditional Gradient Methods for Convex Optimization with General Affine
and Nonlinear Constraints [8.643249539674612]
This paper presents new conditional gradient methods for solving convex optimization problems with general affine and nonlinear constraints.
We first present a new constraint extrapolated condition gradient (CoexCG) method that can achieve an $cal O (1/epsilon2)$ iteration complexity for both smooth and structured nonsmooth function constrained convex optimization.
We further develop novel variants of CoexCG, namely constraint extrapolated and dual regularized conditional gradient (CoexDurCG) methods, that can achieve similar iteration complexity to CoexCG but allow adaptive selection for algorithmic parameters.
arXiv Detail & Related papers (2020-06-30T23:49:38Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.