Effectiveness of Tree-based Ensembles for Anomaly Discovery: Insights, Batch and Streaming Active Learning
- URL: http://arxiv.org/abs/1901.08930v3
- Date: Tue, 14 May 2024 05:29:51 GMT
- Title: Effectiveness of Tree-based Ensembles for Anomaly Discovery: Insights, Batch and Streaming Active Learning
- Authors: Shubhomoy Das, Md Rakibul Islam, Nitthilan Kannappan Jayakodi, Janardhan Rao Doppa,
- Abstract summary: This paper makes four main contributions to improve the state-of-the-art in anomaly discovery using tree-based ensembles.
We develop a novel batch active learning algorithm to improve the diversity of discovered anomalies.
We present a data drift detection algorithm that not only detects the drift robustly, but also allows us to take corrective actions to adapt the anomaly detector in a principled manner.
- Score: 18.49217234413188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many real-world AD applications including computer security and fraud prevention, the anomaly detector must be configurable by the human analyst to minimize the effort on false positives. One important way to configure the detector is by providing true labels (nominal or anomaly) for a few instances. Recent work on active anomaly discovery has shown that greedily querying the top-scoring instance and tuning the weights of ensemble detectors based on label feedback allows us to quickly discover true anomalies. This paper makes four main contributions to improve the state-of-the-art in anomaly discovery using tree-based ensembles. First, we provide an important insight that explains the practical successes of unsupervised tree-based ensembles and active learning based on greedy query selection strategy. We also present empirical results on real-world data to support our insights and theoretical analysis to support active learning. Second, we develop a novel batch active learning algorithm to improve the diversity of discovered anomalies based on a formalism called compact description to describe the discovered anomalies. Third, we develop a novel active learning algorithm to handle streaming data setting. We present a data drift detection algorithm that not only detects the drift robustly, but also allows us to take corrective actions to adapt the anomaly detector in a principled manner. Fourth, we present extensive experiments to evaluate our insights and our tree-based active anomaly discovery algorithms in both batch and streaming data settings. Our results show that active learning allows us to discover significantly more anomalies than state-of-the-art unsupervised baselines, our batch active learning algorithm discovers diverse anomalies, and our algorithms under the streaming-data setup are competitive with the batch setup.
Related papers
- Can Tree Based Approaches Surpass Deep Learning in Anomaly Detection? A
Benchmarking Study [0.6291443816903801]
This paper evaluates a diverse array of machine learning-based anomaly detection algorithms.
The paper contributes significantly by conducting an unbiased comparison of various anomaly detection algorithms.
arXiv Detail & Related papers (2024-02-11T19:12:51Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
We tackle two essential problems of active learning for Deep SVDD: query strategy and semi-supervised learning method.
First, rather than solely identifying anomalies, our query strategy selects uncertain samples according to an adaptive boundary.
Second, we apply noise contrastive estimation in training a one-class classification model to incorporate both labeled normal and abnormal data effectively.
arXiv Detail & Related papers (2023-09-18T03:56:45Z) - Deep Anomaly Detection and Search via Reinforcement Learning [22.005663849044772]
We propose Deep Anomaly Detection and Search (DADS) to balance exploitation and exploration.
During the training process, DADS searches for possible anomalies with hierarchically-structured datasets.
Results show that DADS can efficiently and precisely search anomalies from unlabeled data and learn from them.
arXiv Detail & Related papers (2022-08-31T13:03:33Z) - Learning to Adapt to Unseen Abnormal Activities under Weak Supervision [43.40900198498228]
We present a meta-learning framework for weakly supervised anomaly detection in videos.
Our framework learns to adapt to unseen types of abnormal activities effectively when only video-level annotations of binary labels are available.
arXiv Detail & Related papers (2022-03-25T12:15:44Z) - Little Help Makes a Big Difference: Leveraging Active Learning to
Improve Unsupervised Time Series Anomaly Detection [2.1684857243537334]
A large set of anomaly detection algorithms have been deployed for detecting unexpected network incidents.
Unsupervised anomaly detection algorithms often suffer from excessive false alarms.
We propose to use active learning to introduce and benefit from the feedback of operators.
arXiv Detail & Related papers (2022-01-25T13:54:19Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.