Differential Similarity in Higher Dimensional Spaces: Theory and Applications
- URL: http://arxiv.org/abs/1902.03667v4
- Date: Fri, 10 May 2024 19:54:45 GMT
- Title: Differential Similarity in Higher Dimensional Spaces: Theory and Applications
- Authors: L. Thorne McCarty,
- Abstract summary: We develop an algorithm for clustering and coding that combines a geometric model with a probabilistic model in a principled way.
We evaluate the solution strategies and the estimation techniques by applying them to two familiar real-world examples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an extension and an elaboration of the theory of differential similarity, which was originally proposed in arXiv:1401.2411 [cs.LG]. The goal is to develop an algorithm for clustering and coding that combines a geometric model with a probabilistic model in a principled way. For simplicity, the geometric model in the earlier paper was restricted to the three-dimensional case. The present paper removes this restriction, and considers the full $n$-dimensional case. Although the mathematical model is the same, the strategies for computing solutions in the $n$-dimensional case are different, and one of the main purposes of this paper is to develop and analyze these strategies. Another main purpose is to devise techniques for estimating the parameters of the model from sample data, again in $n$ dimensions. We evaluate the solution strategies and the estimation techniques by applying them to two familiar real-world examples: the classical MNIST dataset and the CIFAR-10 dataset.
Related papers
- Distribution learning via neural differential equations: a nonparametric
statistical perspective [1.4436965372953483]
This work establishes the first general statistical convergence analysis for distribution learning via ODE models trained through likelihood transformations.
We show that the latter can be quantified via the $C1$-metric entropy of the class $mathcal F$.
We then apply this general framework to the setting of $Ck$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $mathcal F$: $Ck$ functions and neural networks.
arXiv Detail & Related papers (2023-09-03T00:21:37Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Topological Parallax: A Geometric Specification for Deep Perception
Models [0.778001492222129]
We introduce topological parallax as a theoretical and computational tool that compares a trained model to a reference dataset.
Our examples show that this geometric similarity between dataset and model is essential to trustworthy and perturbation.
This new concept will add value to the current debate regarding the unclear relationship between overfitting and generalization in applications of deep-learning.
arXiv Detail & Related papers (2023-06-20T18:45:24Z) - Optimal Discriminant Analysis in High-Dimensional Latent Factor Models [1.4213973379473654]
In high-dimensional classification problems, a commonly used approach is to first project the high-dimensional features into a lower dimensional space.
We formulate a latent-variable model with a hidden low-dimensional structure to justify this two-step procedure.
We propose a computationally efficient classifier that takes certain principal components (PCs) of the observed features as projections.
arXiv Detail & Related papers (2022-10-23T21:45:53Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
Federated learning has been recently proposed for distributed model training at the edge.
This paper presents a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework.
We derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses.
arXiv Detail & Related papers (2022-05-22T16:37:53Z) - Test Set Sizing Via Random Matrix Theory [91.3755431537592]
This paper uses techniques from Random Matrix Theory to find the ideal training-testing data split for a simple linear regression.
It defines "ideal" as satisfying the integrity metric, i.e. the empirical model error is the actual measurement noise.
This paper is the first to solve for the training and test size for any model in a way that is truly optimal.
arXiv Detail & Related papers (2021-12-11T13:18:33Z) - Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic
Approach to Manifold Dimension Estimation [92.81218653234669]
We present new approach to manifold hypothesis checking and underlying manifold dimension estimation.
Our geometrical method is a modification for sparse data of a well-known box-counting algorithm for Minkowski dimension calculation.
Experiments on real datasets show that the suggested approach based on two methods combination is powerful and effective.
arXiv Detail & Related papers (2021-07-08T15:35:54Z) - A bandit-learning approach to multifidelity approximation [7.960229223744695]
Multifidelity approximation is an important technique in scientific computation and simulation.
We introduce a bandit-learning approach for leveraging data of varying fidelities to achieve precise estimates.
arXiv Detail & Related papers (2021-03-29T05:29:35Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Bidirectional Generative Modeling Using Adversarial Gradient Estimation [15.270525239234072]
We show that different divergences induce similar algorithms in terms of gradient evaluation.
This paper gives a general recipe for a class of principled $f$-divergence based generative modeling methods.
arXiv Detail & Related papers (2020-02-21T07:28:56Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.