How Implicit Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part I: the 1-D Case of Two Layers with Random First
Layer
- URL: http://arxiv.org/abs/1911.02903v4
- Date: Wed, 4 Oct 2023 15:07:57 GMT
- Title: How Implicit Regularization of ReLU Neural Networks Characterizes the
Learned Function -- Part I: the 1-D Case of Two Layers with Random First
Layer
- Authors: Jakob Heiss, Josef Teichmann, Hanna Wutte
- Abstract summary: We consider one dimensional (shallow) ReLU neural networks in which weights are chosen randomly and only the terminal layer is trained.
We show that for such networks L2-regularized regression corresponds in function space to regularizing the estimate's second derivative for fairly general loss functionals.
- Score: 5.969858080492586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider one dimensional (shallow) ReLU neural networks in
which weights are chosen randomly and only the terminal layer is trained.
First, we mathematically show that for such networks L2-regularized regression
corresponds in function space to regularizing the estimate's second derivative
for fairly general loss functionals. For least squares regression, we show that
the trained network converges to the smooth spline interpolation of the
training data as the number of hidden nodes tends to infinity. Moreover, we
derive a novel correspondence between the early stopped gradient descent
(without any explicit regularization of the weights) and the smoothing spline
regression.
Related papers
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
We study the least-square regression problem with a two-layer fully-connected neural network, with ReLU activation function, trained by gradient flow.
Our first result is a generalization result, that requires no assumptions on the underlying regression function or the noise other than that they are bounded.
arXiv Detail & Related papers (2024-10-08T16:54:23Z) - Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
The implicit bias towards solutions with favorable properties is believed to be a key reason why neural networks trained by gradient-based optimization can generalize well.
While the implicit bias of gradient flow has been widely studied for homogeneous neural networks (including ReLU and leaky ReLU networks), the implicit bias of gradient descent is currently only understood for smooth neural networks.
arXiv Detail & Related papers (2023-10-29T08:47:48Z) - The Implicit Bias of Minima Stability in Multivariate Shallow ReLU
Networks [53.95175206863992]
We study the type of solutions to which gradient descent converges when used to train a single hidden-layer multivariate ReLU network with the quadratic loss.
We prove that although shallow ReLU networks are universal approximators, stable shallow networks are not.
arXiv Detail & Related papers (2023-06-30T09:17:39Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
We prove convergence of depth 2 neural networks, trained via gradient descent, to a global minimum.
Our model has the following features: regression with quadratic loss function, fully connected feedforward architecture, RelU activations, Gaussian data instances, adversarial labels.
They strongly suggest that, at least in our model, the convergence phenomenon extends well beyond the NTK regime''
arXiv Detail & Related papers (2022-12-05T14:47:52Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Implicit Bias of Gradient Descent for Mean Squared Error Regression with
Two-Layer Wide Neural Networks [1.3706331473063877]
We show that the solution of training a width-$n$ shallow ReLU network is within $n- 1/2$ of the function which fits the training data.
We also show that the training trajectories are captured by trajectories of smoothing splines with decreasing regularization strength.
arXiv Detail & Related papers (2020-06-12T17:46:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.