An Abstraction Model for Semantic Segmentation Algorithms
- URL: http://arxiv.org/abs/1912.11995v2
- Date: Thu, 1 Dec 2022 23:55:21 GMT
- Title: An Abstraction Model for Semantic Segmentation Algorithms
- Authors: Reihaneh Teymoori, Zahra Nabizadeh, Nader Karimi, Shadrokh Samavi
- Abstract summary: Semantic segmentation is used in many tasks, such as cancer detection, robot-assisted surgery, satellite image analysis, and self-driving cars.
In this paper, an abstraction model for semantic segmentation offers a comprehensive view of the field.
We compare different approaches and analyze each of the four abstraction blocks' importance in each method's operation.
- Score: 9.561123408923489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation classifies each pixel in the image. Due to its
advantages, semantic segmentation is used in many tasks, such as cancer
detection, robot-assisted surgery, satellite image analysis, and self-driving
cars. Accuracy and efficiency are the two crucial goals for this purpose, and
several state-of-the-art neural networks exist. By employing different
techniques, new solutions have been presented in each method to increase
efficiency and accuracy and reduce costs. However, the diversity of the
implemented approaches for semantic segmentation makes it difficult for
researchers to achieve a comprehensive view of the field. In this paper, an
abstraction model for semantic segmentation offers a comprehensive view of the
field. The proposed framework consists of four general blocks that cover the
operation of the majority of semantic segmentation methods. We also compare
different approaches and analyze each of the four abstraction blocks'
importance in each method's operation.
Related papers
- Evaluation framework for Image Segmentation Algorithms [0.0]
This paper introduces the fundamental concepts and importance of image segmentation, and the role of interactive segmentation in enhancing accuracy.
A detailed background theory section explores various segmentation methods, including thresholding, edge detection, region growing, feature extraction, random forests, support vector machines, convolutional neural networks, U-Net, and Mask R-CNN.
A comparative analysis presents detailed results, emphasizing the strengths, limitations, and trade-offs of each method.
arXiv Detail & Related papers (2025-04-06T10:20:26Z) - Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
We propose a Pixel-Level Domain Adaptation (PLDA) method to encourage the model in learning pixel-wise domain-invariant features.
We experimentally demonstrate the effectiveness of our approach under a wide range of settings.
arXiv Detail & Related papers (2024-08-04T14:14:54Z) - Frequency-based Matcher for Long-tailed Semantic Segmentation [22.199174076366003]
We focus on a relatively under-explored task setting, long-tailed semantic segmentation (LTSS)
We propose a dual-metric evaluation system and construct the LTSS benchmark to demonstrate the performance of semantic segmentation methods and long-tailed solutions.
We also propose a transformer-based algorithm to improve LTSS, frequency-based matcher, which solves the oversuppression problem by one-to-many matching.
arXiv Detail & Related papers (2024-06-06T09:57:56Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
We develop a unified architecture of semantic segmentation and hierarchical GANs.
A unique advantage of our framework is that on forward pass the semantic segmentation network conditions the generative model.
We evaluate our method on two challenging facial expression translation benchmarks, AffectNet and RaFD, and a semantic segmentation benchmark, CelebAMask-HQ.
arXiv Detail & Related papers (2021-12-08T22:06:31Z) - Unsupervised Image Segmentation by Mutual Information Maximization and
Adversarial Regularization [7.165364364478119]
We propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adrial Regularization (InMARS)
Inspired by human perception which parses a scene into perceptual groups, our proposed approach first partitions an input image into meaningful regions (also known as superpixels)
Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes.
Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets.
arXiv Detail & Related papers (2021-07-01T18:36:27Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - Visual Object Tracking by Segmentation with Graph Convolutional Network [7.729569666460712]
We propose to utilize graph convolutional network (GCN) model for superpixel based object tracking.
The proposed model provides a general end-to-end framework which integrates i) label linear prediction, and ii) structure-aware feature information of each superpixel together.
arXiv Detail & Related papers (2020-09-05T12:43:21Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z) - Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping [71.91734471596432]
We propose SEG-GRAD-CAM, a gradient-based method for interpreting semantic segmentation.
Our method is an extension of the widely-used Grad-CAM method, applied locally to produce heatmaps showing the relevance of individual pixels for semantic segmentation.
arXiv Detail & Related papers (2020-02-26T12:32:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.