Multi-organ Segmentation over Partially Labeled Datasets with
Multi-scale Feature Abstraction
- URL: http://arxiv.org/abs/2001.00208v2
- Date: Sat, 6 Jun 2020 14:44:25 GMT
- Title: Multi-organ Segmentation over Partially Labeled Datasets with
Multi-scale Feature Abstraction
- Authors: Xi Fang, Pingkun Yan
- Abstract summary: Shortage of fully annotated datasets has been a limiting factor in developing deep learning based image segmentation algorithms.
We propose a unified training strategy that enables a novel multi-scale deep neural network to be trained on multiple partially labeled datasets.
- Score: 14.92032083210668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shortage of fully annotated datasets has been a limiting factor in developing
deep learning based image segmentation algorithms and the problem becomes more
pronounced in multi-organ segmentation. In this paper, we propose a unified
training strategy that enables a novel multi-scale deep neural network to be
trained on multiple partially labeled datasets for multi-organ segmentation. In
addition, a new network architecture for multi-scale feature abstraction is
proposed to integrate pyramid input and feature analysis into a U-shape pyramid
structure. To bridge the semantic gap caused by directly merging features from
different scales, an equal convolutional depth mechanism is introduced.
Furthermore, we employ a deep supervision mechanism to refine the outputs in
different scales. To fully leverage the segmentation features from all the
scales, we design an adaptive weighting layer to fuse the outputs in an
automatic fashion. All these mechanisms together are integrated into a Pyramid
Input Pyramid Output Feature Abstraction Network (PIPO-FAN). Our proposed
method was evaluated on four publicly available datasets, including BTCV, LiTS,
KiTS and Spleen, where very promising performance has been achieved. The source
code of this work is publicly shared at https://github.com/DIAL-RPI/PIPO-FAN
for others to easily reproduce the work and build their own models with the
introduced mechanisms.
Related papers
- Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - LENet: Lightweight And Efficient LiDAR Semantic Segmentation Using
Multi-Scale Convolution Attention [0.0]
We propose a projection-based semantic segmentation network called LENet with an encoder-decoder structure for LiDAR-based semantic segmentation.
The encoder is composed of a novel multi-scale convolutional attention (MSCA) module with varying receptive field sizes to capture features.
We show that our proposed method is lighter, more efficient, and robust compared to state-of-the-art semantic segmentation methods.
arXiv Detail & Related papers (2023-01-11T02:51:38Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
We propose a Multi-level Second-order (MlSo) few-shot learning network for supervised or unsupervised few-shot image classification and few-shot action recognition.
We leverage so-called power-normalized second-order base learner streams combined with features that express multiple levels of visual abstraction.
We demonstrate respectable results on standard datasets such as Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, fine-grained datasets such as CUB Birds, Stanford Dogs and Cars, and action recognition datasets such as HMDB51, UCF101, and mini-MIT.
arXiv Detail & Related papers (2022-01-15T19:49:00Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
We present a novel neural network using multi scale feature fusion at various scales for accurate and efficient semantic image segmentation.
We used ResNet based feature extractor, dilated convolutional layers in downsampling part, atrous convolutional layers in the upsampling part and used concat operation to merge them.
A new attention module is proposed to encode more contextual information and enhance the receptive field of the network.
arXiv Detail & Related papers (2020-06-30T20:19:09Z) - A novel Region of Interest Extraction Layer for Instance Segmentation [3.5493798890908104]
This paper is motivated by the need to overcome the limitations of existing RoI extractors.
The proposed layer (called Generic RoI Extractor - GRoIE) introduces non-local building blocks and attention mechanisms to boost the performance.
GRoIE can be integrated seamlessly with every two-stage architecture for both object detection and instance segmentation tasks.
arXiv Detail & Related papers (2020-04-28T17:07:32Z) - UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation [20.558512044987125]
We propose a novel UNet 3+, which takes advantage of full-scale skip connections and deep supervisions.
The proposed method is especially benefiting for organs that appear at varying scales.
arXiv Detail & Related papers (2020-04-19T08:05:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.