Experimental Analysis of Reinforcement Learning Techniques for Spectrum
Sharing Radar
- URL: http://arxiv.org/abs/2001.01799v2
- Date: Fri, 13 Mar 2020 23:24:44 GMT
- Title: Experimental Analysis of Reinforcement Learning Techniques for Spectrum
Sharing Radar
- Authors: Charles E. Thornton, R. Michael Buehrer, Anthony F. Martone, Kelly D.
Sherbondy
- Abstract summary: We describe a framework for the application of Reinforcement (RL) control to a radar system that operates in a congested spectral setting.
We compare the utility of several RL algorithms through a discussion of experiments performed on Commercial off-the-shelf (COTS) hardware.
Each RL technique is evaluated in terms of convergence, radar detection performance achieved in a congested spectral environment, and the ability to share 100MHz spectrum with an uncooperative communications system.
- Score: 8.852345851445829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we first describe a framework for the application of
Reinforcement Learning (RL) control to a radar system that operates in a
congested spectral setting. We then compare the utility of several RL
algorithms through a discussion of experiments performed on Commercial
off-the-shelf (COTS) hardware. Each RL technique is evaluated in terms of
convergence, radar detection performance achieved in a congested spectral
environment, and the ability to share 100MHz spectrum with an uncooperative
communications system. We examine policy iteration, which solves an environment
posed as a Markov Decision Process (MDP) by directly solving for a stochastic
mapping between environmental states and radar waveforms, as well as Deep RL
techniques, which utilize a form of Q-Learning to approximate a parameterized
function that is used by the radar to select optimal actions. We show that RL
techniques are beneficial over a Sense-and-Avoid (SAA) scheme and discuss the
conditions under which each approach is most effective.
Related papers
- Unfolding Target Detection with State Space Model [8.493729039825332]
We introduce a novel method that combines signal processing and deep learning by unfolding the CFAR detector with a state space model architecture.
By reserving the CFAR pipeline yet turning its sophisticated configurations into trainable parameters, our method achieves high detection performance without manual parameter tuning.
The results highlight the remarkable performance of the proposed method, outperforming CFAR and its variants by 10X in detection rate and false alarm rate.
arXiv Detail & Related papers (2024-10-30T07:43:18Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
This paper proposes an RL framework that leverages an accurate and parallelizable emulation environment to reenact the conditions of a tactical network.
We evaluate our RL learning framework by training a MARLIN agent in conditions replicating a bottleneck link transition between a Satellite Communication (SATCOM) and an UHF Wide Band (UHF) radio link.
arXiv Detail & Related papers (2023-06-27T16:15:15Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z) - Cross-Modal Contrastive Learning of Representations for Navigation using
Lightweight, Low-Cost Millimeter Wave Radar for Adverse Environmental
Conditions [1.9822346227538585]
We propose the use of single-chip millimeter-wave (mmWave) radar for learning-based autonomous navigation.
Because mmWave radar signals are often noisy and sparse, we propose a cross-modal contrastive learning for representation (CM-CLR) method.
Our proposed end-to-end deep RL policy with contrastive learning successfully navigated the robot through smoke-filled maze environments.
arXiv Detail & Related papers (2021-01-10T11:21:17Z) - Ensemble and Random Collaborative Representation-Based Anomaly Detector
for Hyperspectral Imagery [133.83048723991462]
We propose a novel ensemble and random collaborative representation-based detector (ERCRD) for hyperspectral anomaly detection (HAD)
Our experiments on four real hyperspectral datasets exhibit the accuracy and efficiency of this proposed ERCRD method compared with ten state-of-the-art HAD methods.
arXiv Detail & Related papers (2021-01-06T11:23:51Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - Efficient Online Learning for Cognitive Radar-Cellular Coexistence via
Contextual Thompson Sampling [9.805913930878]
This paper describes a sequential, or online, learning scheme for adaptive radar transmissions.
A linear Contextual Bandit (CB) learning framework is applied to drive the radar's behavior.
We show that the proposed Thompson Sampling (TS) algorithm maintains competitive performance with a more complex Deep Q-Network (DQN)
arXiv Detail & Related papers (2020-08-24T01:20:58Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
A radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate mutual interference with other systems.
We extend the DQL-based approach to incorporate Double Q-learning and a recurrent neural network to form a Double Deep Recurrent Q-Network.
Our experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments.
arXiv Detail & Related papers (2020-06-23T17:21:28Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
This paper considers the problem of multi-target detection for massive multiple input multiple output (MMIMO) cognitive radar (CR)
We propose a reinforcement learning (RL) based algorithm for cognitive multi-target detection in the presence of unknown disturbance statistics.
Numerical simulations are performed to assess the performance of the proposed RL-based algorithm in both stationary and dynamic environments.
arXiv Detail & Related papers (2020-05-10T16:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.