Clustering Binary Data by Application of Combinatorial Optimization
Heuristics
- URL: http://arxiv.org/abs/2001.01809v1
- Date: Mon, 6 Jan 2020 23:33:31 GMT
- Title: Clustering Binary Data by Application of Combinatorial Optimization
Heuristics
- Authors: Javier Trejos-Zelaya, Luis Eduardo Amaya-Brice\~no, Alejandra
Jim\'enez-Romero, Alex Murillo-Fern\'andez, Eduardo Piza-Volio, Mario
Villalobos-Arias
- Abstract summary: We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
- Score: 52.77024349608834
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We study clustering methods for binary data, first defining aggregation
criteria that measure the compactness of clusters. Five new and original
methods are introduced, using neighborhoods and population behavior
combinatorial optimization metaheuristics: first ones are simulated annealing,
threshold accepting and tabu search, and the others are a genetic algorithm and
ant colony optimization. The methods are implemented, performing the proper
calibration of parameters in the case of heuristics, to ensure good results.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a
comparison is performed for one of the aggregations using L1 dissimilarity,
with hierarchical clustering, and a version of k-means: partitioning around
medoids or PAM. Simulated annealing perform very well, especially compared to
classical methods.
Related papers
- Linear time Evidence Accumulation Clustering with KMeans [0.0]
This work describes a trick which mimic the behavior of average linkage clustering.
We found a way of computing efficiently the density of a partitioning, reducing the cost from a quadratic to linear complexity.
The k-means results are comparable to the best state of the art in terms of NMI while keeping the computational cost low.
arXiv Detail & Related papers (2023-11-15T14:12:59Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
The paper presents the algorithm for clustering a dataset by grouping the optimal, from the point of view of the BIC criterion.
An essential advantage of the algorithm is its ability to predict correct supercluster for new data based on already trained clusterer.
arXiv Detail & Related papers (2023-09-05T23:49:46Z) - Shift of Pairwise Similarities for Data Clustering [7.462336024223667]
We consider the case where the regularization term is the sum of the squared size of the clusters, and then generalize it to adaptive regularization of the pairwise similarities.
This leads to shifting (adaptively) the pairwise similarities which might make some of them negative.
We then propose an efficient local search optimization algorithm with fast theoretical convergence rate to solve the new clustering problem.
arXiv Detail & Related papers (2021-10-25T16:55:07Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z) - Contrastive Clustering [57.71729650297379]
We propose Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning.
In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19% (39%) performance improvement compared with the best baseline.
arXiv Detail & Related papers (2020-09-21T08:54:40Z) - Biclustering with Alternating K-Means [5.089110111757978]
We provide a new formulation of the biclustering problem based on the idea of minimizing the empirical clustering risk.
We propose a simple and novel algorithm that finds a local minimum by alternating the use of an adapted version of the k-means clustering algorithm between columns and rows.
The results demonstrate that our algorithm is able to detect meaningful structures in the data and outperform other competing biclustering methods in various settings and situations.
arXiv Detail & Related papers (2020-09-09T20:15:24Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
We introduce a randomly extrapolated primal-dual coordinate descent method that adapts to sparsity of the data matrix and the favorable structures of the objective function.
We show almost sure convergence of the sequence and optimal sublinear convergence rates for the primal-dual gap and objective values, in the general convex-concave case.
arXiv Detail & Related papers (2020-07-13T17:39:35Z) - Conjoined Dirichlet Process [63.89763375457853]
We develop a novel, non-parametric probabilistic biclustering method based on Dirichlet processes to identify biclusters with strong co-occurrence in both rows and columns.
We apply our method to two different applications, text mining and gene expression analysis, and demonstrate that our method improves bicluster extraction in many settings compared to existing approaches.
arXiv Detail & Related papers (2020-02-08T19:41:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.