Disentanglement by Nonlinear ICA with General Incompressible-flow
Networks (GIN)
- URL: http://arxiv.org/abs/2001.04872v1
- Date: Tue, 14 Jan 2020 16:25:08 GMT
- Title: Disentanglement by Nonlinear ICA with General Incompressible-flow
Networks (GIN)
- Authors: Peter Sorrenson, Carsten Rother, Ullrich K\"othe
- Abstract summary: A central question of representation learning asks under which conditions it is possible to reconstruct the true latent variables of an arbitrarily complex generative process.
Recent breakthrough work by Khehem et al. on nonlinear ICA has answered this question for a broad class of conditional generative processes.
We extend this important result in a direction relevant for application to real-world data.
- Score: 30.74691299906988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A central question of representation learning asks under which conditions it
is possible to reconstruct the true latent variables of an arbitrarily complex
generative process. Recent breakthrough work by Khemakhem et al. (2019) on
nonlinear ICA has answered this question for a broad class of conditional
generative processes. We extend this important result in a direction relevant
for application to real-world data. First, we generalize the theory to the case
of unknown intrinsic problem dimension and prove that in some special (but not
very restrictive) cases, informative latent variables will be automatically
separated from noise by an estimating model. Furthermore, the recovered
informative latent variables will be in one-to-one correspondence with the true
latent variables of the generating process, up to a trivial component-wise
transformation. Second, we introduce a modification of the RealNVP invertible
neural network architecture (Dinh et al. (2016)) which is particularly suitable
for this type of problem: the General Incompressible-flow Network (GIN).
Experiments on artificial data and EMNIST demonstrate that theoretical
predictions are indeed verified in practice. In particular, we provide a
detailed set of exactly 22 informative latent variables extracted from EMNIST.
Related papers
- A Non-negative VAE:the Generalized Gamma Belief Network [49.970917207211556]
The gamma belief network (GBN) has demonstrated its potential for uncovering multi-layer interpretable latent representations in text data.
We introduce the generalized gamma belief network (Generalized GBN) in this paper, which extends the original linear generative model to a more expressive non-linear generative model.
We also propose an upward-downward Weibull inference network to approximate the posterior distribution of the latent variables.
arXiv Detail & Related papers (2024-08-06T18:18:37Z) - Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning [12.947265104477237]
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning.
The proposed Focused Adversial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach.
It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition.
arXiv Detail & Related papers (2024-05-07T23:37:40Z) - Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model
Reduction for Operator Learning [12.124206935054389]
In this paper, we utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-based Neural Network (AENet)
Our numerical experiments validate the ability of AENet to accurately learn the solution operator of nonlinear partial differential equations.
Our theoretical framework shows that the sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled process.
arXiv Detail & Related papers (2024-01-19T05:01:43Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
We propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility.
Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
arXiv Detail & Related papers (2023-01-02T06:16:56Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - Nonlinear Invariant Risk Minimization: A Causal Approach [5.63479133344366]
We propose a learning paradigm that enables out-of-distribution generalization in the nonlinear setting.
We show identifiability of the data representation up to very simple transformations.
Extensive experiments on both synthetic and real-world datasets show that our approach significantly outperforms a variety of baseline methods.
arXiv Detail & Related papers (2021-02-24T15:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.