LE-HGR: A Lightweight and Efficient RGB-based Online Gesture Recognition
Network for Embedded AR Devices
- URL: http://arxiv.org/abs/2001.05654v1
- Date: Thu, 16 Jan 2020 05:23:24 GMT
- Title: LE-HGR: A Lightweight and Efficient RGB-based Online Gesture Recognition
Network for Embedded AR Devices
- Authors: Hongwei Xie, Jiafang Wang, Baitao Shao, Jian Gu, Mingyang Li
- Abstract summary: We propose a lightweight and computationally efficient HGR framework, namely LE-HGR, to enable real-time gesture recognition on embedded devices with low computing power.
We show that the proposed method is of high accuracy and robustness, which is able to reach high-end performance in a variety of complicated interaction environments.
- Score: 8.509059894058947
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Online hand gesture recognition (HGR) techniques are essential in augmented
reality (AR) applications for enabling natural human-to-computer interaction
and communication. In recent years, the consumer market for low-cost AR devices
has been rapidly growing, while the technology maturity in this domain is still
limited. Those devices are typical of low prices, limited memory, and
resource-constrained computational units, which makes online HGR a challenging
problem. To tackle this problem, we propose a lightweight and computationally
efficient HGR framework, namely LE-HGR, to enable real-time gesture recognition
on embedded devices with low computing power. We also show that the proposed
method is of high accuracy and robustness, which is able to reach high-end
performance in a variety of complicated interaction environments. To achieve
our goal, we first propose a cascaded multi-task convolutional neural network
(CNN) to simultaneously predict probabilities of hand detection and regress
hand keypoint locations online. We show that, with the proposed cascaded
architecture design, false-positive estimates can be largely eliminated.
Additionally, an associated mapping approach is introduced to track the hand
trace via the predicted locations, which addresses the interference of
multi-handedness. Subsequently, we propose a trace sequence neural network
(TraceSeqNN) to recognize the hand gesture by exploiting the motion features of
the tracked trace. Finally, we provide a variety of experimental results to
show that the proposed framework is able to achieve state-of-the-art accuracy
with significantly reduced computational cost, which are the key properties for
enabling real-time applications in low-cost commercial devices such as mobile
devices and AR/VR headsets.
Related papers
- Real-Time Hand Gesture Recognition: Integrating Skeleton-Based Data Fusion and Multi-Stream CNN [0.0]
Hand Gesture Recognition (HGR) enables intuitive human-computer interactions in various real-world contexts.
Existing frameworks often struggle to meet the real-time requirements essential for practical HGR applications.
This study introduces a robust, skeleton-based framework for dynamic HGR that simplifies the recognition of dynamic hand gestures into a static image task.
arXiv Detail & Related papers (2024-06-21T09:30:59Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
We propose a novel graph-guided neural network approach for Human Activity Recognition (HAR) in smart homes.
We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home.
Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms.
arXiv Detail & Related papers (2023-11-16T02:43:13Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Light-weighted CNN-Attention based architecture for Hand Gesture
Recognition via ElectroMyography [19.51045409936039]
We propose a light-weighted hybrid architecture (HDCAM) based on Convolutional Neural Network (CNN) and attention mechanism.
The proposed HDCAM model with 58,441 parameters reached a new state-of-the-art (SOTA) performance with 82.91% and 81.28% accuracy on window sizes of 300 ms and 200 ms for classifying 17 hand gestures.
arXiv Detail & Related papers (2022-10-27T02:12:07Z) - LaMAR: Benchmarking Localization and Mapping for Augmented Reality [80.23361950062302]
We introduce LaMAR, a new benchmark with a comprehensive capture and GT pipeline that co-registers realistic trajectories and sensor streams captured by heterogeneous AR devices.
We publish a benchmark dataset of diverse and large-scale scenes recorded with head-mounted and hand-held AR devices.
arXiv Detail & Related papers (2022-10-19T17:58:17Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - A Markerless Deep Learning-based 6 Degrees of Freedom PoseEstimation for
with Mobile Robots using RGB Data [3.4806267677524896]
We propose a method to deploy state of the art neural networks for real time 3D object localization on augmented reality devices.
We focus on fast 2D detection approaches which are extracting the 3D pose of the object fast and accurately by using only 2D input.
For the 6D annotation of 2D images, we developed an annotation tool, which is, to our knowledge, the first open source tool to be available.
arXiv Detail & Related papers (2020-01-16T09:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.