Human Action Recognition and Assessment via Deep Neural Network
Self-Organization
- URL: http://arxiv.org/abs/2001.05837v2
- Date: Sun, 16 Feb 2020 16:56:09 GMT
- Title: Human Action Recognition and Assessment via Deep Neural Network
Self-Organization
- Authors: German I. Parisi
- Abstract summary: This chapter introduces a set of hierarchical models for the learning and recognition of actions from depth maps and RGB images.
A particularity of these models is the use of growing self-organizing networks that quickly adapt to non-stationary distributions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robust recognition and assessment of human actions are crucial in
human-robot interaction (HRI) domains. While state-of-the-art models of action
perception show remarkable results in large-scale action datasets, they mostly
lack the flexibility, robustness, and scalability needed to operate in natural
HRI scenarios which require the continuous acquisition of sensory information
as well as the classification or assessment of human body patterns in real
time. In this chapter, I introduce a set of hierarchical models for the
learning and recognition of actions from depth maps and RGB images through the
use of neural network self-organization. A particularity of these models is the
use of growing self-organizing networks that quickly adapt to non-stationary
distributions and implement dedicated mechanisms for continual learning from
temporally correlated input.
Related papers
- DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - Emotion Recognition from the perspective of Activity Recognition [0.0]
Appraising human emotional states, behaviors, and reactions displayed in real-world settings can be accomplished using latent continuous dimensions.
For emotion recognition systems to be deployed and integrated into real-world mobile and computing devices, we need to consider data collected in the world.
We propose a novel three-stream end-to-end deep learning regression pipeline with an attention mechanism.
arXiv Detail & Related papers (2024-03-24T18:53:57Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
We propose a graph neural network, HO-GCN, to fuse motion data and dynamic descriptors for the prediction task.
We show the proposed network that consumes dynamic descriptors can achieve state-of-the-art prediction results and help the network better generalize to unseen objects.
arXiv Detail & Related papers (2022-06-25T09:55:39Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - HAN: An Efficient Hierarchical Self-Attention Network for Skeleton-Based
Gesture Recognition [73.64451471862613]
We propose an efficient hierarchical self-attention network (HAN) for skeleton-based gesture recognition.
Joint self-attention module is used to capture spatial features of fingers, the finger self-attention module is designed to aggregate features of the whole hand.
Experiments show that our method achieves competitive results on three gesture recognition datasets with much lower computational complexity.
arXiv Detail & Related papers (2021-06-25T02:15:53Z) - User profile-driven large-scale multi-agent learning from demonstration
in federated human-robot collaborative environments [5.218882272051637]
This paper introduces a novel user profile formulation for providing a fine-grained representation of the exhibited human behavior.
The overall designed scheme enables both short- and long-term analysis/interpretation of the human behavior.
arXiv Detail & Related papers (2021-03-30T15:33:21Z) - Learning Asynchronous and Sparse Human-Object Interaction in Videos [56.73059840294019]
Asynchronous-Sparse Interaction Graph Networks (ASSIGN) is able to automatically detect the structure of interaction events associated with entities in a video scene.
ASSIGN is tested on human-object interaction recognition and shows superior performance in segmenting and labeling of human sub-activities and object affordances from raw videos.
arXiv Detail & Related papers (2021-03-03T23:43:55Z) - A Two-stream Neural Network for Pose-based Hand Gesture Recognition [23.50938160992517]
Pose based hand gesture recognition has been widely studied in the recent years.
This paper proposes a two-stream neural network with one stream being a self-attention based graph convolutional network (SAGCN)
The residual-connection enhanced Bi-IndRNN extends an IndRNN with the capability of bidirectional processing for temporal modelling.
arXiv Detail & Related papers (2021-01-22T03:22:26Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
We present a self-attention based neural network model for activity recognition from body-worn sensor data.
We performed experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD.
Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-out-subject evaluation.
arXiv Detail & Related papers (2020-03-17T14:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.