Unsupervised Learning of Camera Pose with Compositional Re-estimation
- URL: http://arxiv.org/abs/2001.06479v1
- Date: Fri, 17 Jan 2020 18:59:07 GMT
- Title: Unsupervised Learning of Camera Pose with Compositional Re-estimation
- Authors: Seyed Shahabeddin Nabavi, Mehrdad Hosseinzadeh, Ramin Fahimi, Yang
Wang
- Abstract summary: Given an input video sequence, our goal is to estimate the camera pose (i.e. the camera motion) between consecutive frames.
We propose an alternative approach that utilizes a compositional re-estimation process for camera pose estimation.
Our approach significantly improves the predicted camera motion both quantitatively and visually.
- Score: 10.251550038802343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of unsupervised camera pose estimation. Given an
input video sequence, our goal is to estimate the camera pose (i.e. the camera
motion) between consecutive frames. Traditionally, this problem is tackled by
placing strict constraints on the transformation vector or by incorporating
optical flow through a complex pipeline. We propose an alternative approach
that utilizes a compositional re-estimation process for camera pose estimation.
Given an input, we first estimate a depth map. Our method then iteratively
estimates the camera motion based on the estimated depth map. Our approach
significantly improves the predicted camera motion both quantitatively and
visually. Furthermore, the re-estimation resolves the problem of
out-of-boundaries pixels in a novel and simple way. Another advantage of our
approach is that it is adaptable to other camera pose estimation approaches.
Experimental analysis on KITTI benchmark dataset demonstrates that our method
outperforms existing state-of-the-art approaches in unsupervised camera
ego-motion estimation.
Related papers
- SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPose is a sparse keypoint-based framework for two-view relative pose estimation in camera-to-world and object-to-camera scenarios.
It achieves competitive or superior performance compared to state-of-the-art methods in terms of accuracy and speed.
It is robust to different image sizes and camera intrinsics, and can be deployed with low computing resources.
arXiv Detail & Related papers (2024-07-11T05:46:35Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - DepthP+P: Metric Accurate Monocular Depth Estimation using Planar and
Parallax [0.0]
Current self-supervised monocular depth estimation methods are mostly based on estimating a rigid-body motion representing camera motion.
We propose DepthP+P, a method that learns to estimate outputs in metric scale by following the traditional planar parallax paradigm.
arXiv Detail & Related papers (2023-01-05T14:53:21Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
We present a robust dense indirect structure-from-motion method for videos that is based on dense correspondence from pairwise optical flow.
A novel neural network architecture is proposed for processing irregular point trajectory data.
Experiments on MPI Sintel dataset show that our system produces significantly more accurate camera trajectories.
arXiv Detail & Related papers (2022-07-19T09:19:45Z) - DiffPoseNet: Direct Differentiable Camera Pose Estimation [11.941057800943653]
We introduce a network NFlowNet, for normal flow estimation which is used to enforce robust and direct constraints.
We perform extensive qualitative and quantitative evaluation of the proposed DiffPoseNet's sensitivity to noise and its generalization across datasets.
arXiv Detail & Related papers (2022-03-21T17:54:30Z) - Self-Supervised Camera Self-Calibration from Video [34.35533943247917]
We propose a learning algorithm to regress per-sequence calibration parameters using an efficient family of general camera models.
Our procedure achieves self-calibration results with sub-pixel reprojection error, outperforming other learning-based methods.
arXiv Detail & Related papers (2021-12-06T19:42:05Z) - Attentive and Contrastive Learning for Joint Depth and Motion Field
Estimation [76.58256020932312]
Estimating the motion of the camera together with the 3D structure of the scene from a monocular vision system is a complex task.
We present a self-supervised learning framework for 3D object motion field estimation from monocular videos.
arXiv Detail & Related papers (2021-10-13T16:45:01Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video.
Our algorithm combines two complementary techniques: (1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-aware depth filtering for high-frequency alignment of fine depth details.
In contrast to prior approaches, our method does not require camera poses as input and achieves robust reconstruction for challenging hand-held cell phone captures containing a significant amount of noise, shake, motion blur, and rolling shutter deformations.
arXiv Detail & Related papers (2020-12-10T18:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.