A Multi-Scale Tensor Network Architecture for Classification and
Regression
- URL: http://arxiv.org/abs/2001.08286v1
- Date: Wed, 22 Jan 2020 21:26:28 GMT
- Title: A Multi-Scale Tensor Network Architecture for Classification and
Regression
- Authors: Justin Reyes, Miles Stoudenmire
- Abstract summary: We present an algorithm for supervised learning using tensor networks.
We employ a step of preprocessing the data by coarse-graining through a sequence of wavelet transformations.
We show how fine-graining through the network may be used to initialize models with access to finer-scale features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm for supervised learning using tensor networks,
employing a step of preprocessing the data by coarse-graining through a
sequence of wavelet transformations. We represent these transformations as a
set of tensor network layers identical to those in a multi-scale entanglement
renormalization ansatz (MERA) tensor network, and perform supervised learning
and regression tasks through a model based on a matrix product state (MPS)
tensor network acting on the coarse-grained data. Because the entire model
consists of tensor contractions (apart from the initial non-linear feature
map), we can adaptively fine-grain the optimized MPS model backwards through
the layers with essentially no loss in performance. The MPS itself is trained
using an adaptive algorithm based on the density matrix renormalization group
(DMRG) algorithm. We test our methods by performing a classification task on
audio data and a regression task on temperature time-series data, studying the
dependence of training accuracy on the number of coarse-graining layers and
showing how fine-graining through the network may be used to initialize models
with access to finer-scale features.
Related papers
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
We propose an adaptive convolutional dictionary network (ACDNet) for metal artifact reduction.
Our ACDNet can automatically learn the prior for artifact-free CT images via training data and adaptively adjust the representation kernels for each input CT image.
Our method inherits the clear interpretability of model-based methods and maintains the powerful representation ability of learning-based methods.
arXiv Detail & Related papers (2022-05-16T06:49:36Z) - An Optimization-Based Meta-Learning Model for MRI Reconstruction with
Diverse Dataset [4.9259403018534496]
We develop a generalizable MRI reconstruction model in the meta-learning framework.
The proposed network learns regularization function in a learner adaptional model.
We test the result of quick training on the unseen tasks after meta-training and in the saving half of the time.
arXiv Detail & Related papers (2021-10-02T03:21:52Z) - MLCTR: A Fast Scalable Coupled Tensor Completion Based on Multi-Layer
Non-Linear Matrix Factorization [3.6978630614152013]
This paper focuses on the embedding learning aspect of the tensor completion problem and proposes a new multi-layer neural network architecture for factorization and completion (MLCTR)
The network architecture entails multiple advantages: a series of low-rank matrix factorizations building blocks to minimize overfitting, interleaved transfer functions in each layer for non-linearity, and by-pass connections to reduce diminishing problem and increase depths of networks.
Our algorithm is highly efficient for imputing missing values in the EPS data.
arXiv Detail & Related papers (2021-09-04T03:08:34Z) - Train your classifier first: Cascade Neural Networks Training from upper
layers to lower layers [54.47911829539919]
We develop a novel top-down training method which can be viewed as an algorithm for searching for high-quality classifiers.
We tested this method on automatic speech recognition (ASR) tasks and language modelling tasks.
The proposed method consistently improves recurrent neural network ASR models on Wall Street Journal, self-attention ASR models on Switchboard, and AWD-LSTM language models on WikiText-2.
arXiv Detail & Related papers (2021-02-09T08:19:49Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
A promising strategy is based on tensor networks, which have been very successful in physical and chemical applications.
We show that the weights of a multidimensional regression model can be learned by means of tensor networks with the aim of performing a powerful compact representation.
An algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational power.
arXiv Detail & Related papers (2021-01-22T16:14:38Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Anomaly Detection with Tensor Networks [2.3895981099137535]
We exploit the memory and computational efficiency of tensor networks to learn a linear transformation over a space with a dimension exponential in the number of original features.
We produce competitive results on image datasets, despite not exploiting the locality of images.
arXiv Detail & Related papers (2020-06-03T20:41:30Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.