Scaling Laws for Neural Language Models
- URL: http://arxiv.org/abs/2001.08361v1
- Date: Thu, 23 Jan 2020 03:59:20 GMT
- Title: Scaling Laws for Neural Language Models
- Authors: Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei
- Abstract summary: We study scaling laws for language model performance on the cross-entropy loss.
The loss scales as a power-law with model size, dataset size, and the amount of compute used for training.
- Score: 14.472857826717613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study empirical scaling laws for language model performance on the
cross-entropy loss. The loss scales as a power-law with model size, dataset
size, and the amount of compute used for training, with some trends spanning
more than seven orders of magnitude. Other architectural details such as
network width or depth have minimal effects within a wide range. Simple
equations govern the dependence of overfitting on model/dataset size and the
dependence of training speed on model size. These relationships allow us to
determine the optimal allocation of a fixed compute budget. Larger models are
significantly more sample-efficient, such that optimally compute-efficient
training involves training very large models on a relatively modest amount of
data and stopping significantly before convergence.
Related papers
- A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.
We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - Unified Neural Network Scaling Laws and Scale-time Equivalence [10.918504301310753]
We present a novel theoretical characterization of how three factors -- model size, training time, and data volume -- interact to determine the performance of deep neural networks.
We first establish a theoretical and empirical equivalence between scaling the size of a neural network and increasing its training time proportionally.
We then combine scale-time equivalence with a linear model analysis of double descent to obtain a unified theoretical scaling law.
arXiv Detail & Related papers (2024-09-09T16:45:26Z) - More Compute Is What You Need [3.184416958830696]
We propose a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models.
We predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
arXiv Detail & Related papers (2024-04-30T12:05:48Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization.
Our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
arXiv Detail & Related papers (2024-02-02T01:41:38Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
Scaling up language models has led to unprecedented performance gains.
How do language models of different sizes learn during pre-training?
Why do larger language models demonstrate more desirable behaviors?
arXiv Detail & Related papers (2022-12-19T19:16:29Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - Scaling Laws for Acoustic Models [7.906034575114518]
Recent work has shown that autoregressive generative models with cross-entropy objective functions exhibit smooth power-law relationships.
We show that acoustic models trained with an auto-predictive coding loss behave as if they are subject to similar scaling laws.
arXiv Detail & Related papers (2021-06-11T18:59:24Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute.
We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps.
This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models.
arXiv Detail & Related papers (2020-02-26T21:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.