Visual Summary of Value-level Feature Attribution in Prediction Classes
with Recurrent Neural Networks
- URL: http://arxiv.org/abs/2001.08379v2
- Date: Fri, 21 Aug 2020 19:22:38 GMT
- Title: Visual Summary of Value-level Feature Attribution in Prediction Classes
with Recurrent Neural Networks
- Authors: Chuan Wang, Xumeng Wang, Kwan-Liu Ma
- Abstract summary: We present ViSFA, an interactive system that visually summarizes feature attribution over time for different feature values.
We demonstrate that ViSFA can help us reason RNN prediction and uncover insights from data by distilling complex attribution into compact and easy-to-interpret visualizations.
- Score: 26.632390778592367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Recurrent Neural Networks (RNN) is increasingly used in decision-making
with temporal sequences. However, understanding how RNN models produce final
predictions remains a major challenge. Existing work on interpreting RNN models
for sequence predictions often focuses on explaining predictions for individual
data instances (e.g., patients or students). Because state-of-the-art
predictive models are formed with millions of parameters optimized over
millions of instances, explaining predictions for single data instances can
easily miss a bigger picture. Besides, many outperforming RNN models use
multi-hot encoding to represent the presence/absence of features, where the
interpretability of feature value attribution is missing. We present ViSFA, an
interactive system that visually summarizes feature attribution over time for
different feature values. ViSFA scales to large data such as the MIMIC dataset
containing the electronic health records of 1.2 million high-dimensional
temporal events. We demonstrate that ViSFA can help us reason RNN prediction
and uncover insights from data by distilling complex attribution into compact
and easy-to-interpret visualizations.
Related papers
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
This paper proposes a novel modular neural network model for time series prediction that is interpretable by construction.
A recurrent neural network learns the temporal dependencies in the data while an attention-based feature selection component selects the most relevant features.
A modular deep network is trained from the selected features independently to show the users how features influence outcomes, making the model interpretable.
arXiv Detail & Related papers (2023-11-28T14:51:06Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Simple Recurrent Neural Networks is all we need for clinical events
predictions using EHR data [22.81278657120305]
Recurrent neural networks (RNNs) are common architecture for EHR-based clinical events predictive models.
We used two prediction tasks: the risk for developing heart failure and the risk of early readmission for inpatient hospitalization.
We found that simple gated RNN models, including GRUs and LSTMs, often offer competitive results when properly tuned with Bayesian Optimization.
arXiv Detail & Related papers (2021-10-03T13:07:23Z) - Interpretable Additive Recurrent Neural Networks For Multivariate
Clinical Time Series [4.125698836261585]
We present the Interpretable-RNN (I-RNN) that balances model complexity and accuracy by forcing the relationship between variables in the model to be additive.
I-RNN specifically captures the unique characteristics of clinical time series, which are unevenly sampled in time, asynchronously acquired, and have missing data.
We evaluate the I-RNN model on the Physionet 2012 Challenge dataset to predict in-hospital mortality, and on a real-world clinical decision support task: predicting hemodynamic interventions in the intensive care unit.
arXiv Detail & Related papers (2021-09-15T22:30:19Z) - An Interaction-based Convolutional Neural Network (ICNN) Towards Better
Understanding of COVID-19 X-ray Images [0.0]
We propose a novel Interaction-based Convolutional Neural Network (ICNN) that does not make assumptions about the relevance of local information.
We demonstrate that the proposed method produces state-of-the-art prediction performance of 99.8% on a real-world data set classifying COVID-19 Chest X-ray images.
arXiv Detail & Related papers (2021-06-13T04:41:17Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.