Perception as prediction using general value functions in autonomous
driving applications
- URL: http://arxiv.org/abs/2001.09113v1
- Date: Fri, 24 Jan 2020 17:33:06 GMT
- Title: Perception as prediction using general value functions in autonomous
driving applications
- Authors: Daniel Graves, Kasra Rezaee, Sean Scheideman
- Abstract summary: Perception as prediction learns data-driven predictions relating to the impact of actions on the agent's perception of the world.
We demonstrate perception as prediction by learning to predict an agent's front safety and rear safety with GVFs.
We show that these predictions can be used to produce similar control behavior to an LQR-based controller in an adaptive cruise control problem.
- Score: 5.071770433010771
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose and demonstrate a framework called perception as prediction for
autonomous driving that uses general value functions (GVFs) to learn
predictions. Perception as prediction learns data-driven predictions relating
to the impact of actions on the agent's perception of the world. It also
provides a data-driven approach to predict the impact of the anticipated
behavior of other agents on the world without explicitly learning their policy
or intentions. We demonstrate perception as prediction by learning to predict
an agent's front safety and rear safety with GVFs, which encapsulate
anticipation of the behavior of the vehicle in front and in the rear,
respectively. The safety predictions are learned through random interactions in
a simulated environment containing other agents. We show that these predictions
can be used to produce similar control behavior to an LQR-based controller in
an adaptive cruise control problem as well as provide advanced warning when the
vehicle behind is approaching dangerously. The predictions are compact
policy-based predictions that support prediction of the long term impact on
safety when following a given policy. We analyze two controllers that use the
learned predictions in a racing simulator to understand the value of the
predictions and demonstrate their use in the real-world on a Clearpath Jackal
robot and an autonomous vehicle platform.
Related papers
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - ScePT: Scene-consistent, Policy-based Trajectory Predictions for
Planning [32.71073060698739]
Trajectory prediction is critical for autonomous systems that share environments with uncontrolled agents.
We present ScePT, a policy planning-based trajectory prediction model.
It explicitly enforces scene consistency and learns an agent interaction policy that can be used for conditional prediction.
arXiv Detail & Related papers (2022-06-18T00:00:02Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
We analyze the requirements on pedestrian behavior prediction for automated driving via a system-level approach.
Based on human driving behavior we derive appropriate reaction patterns of an automated vehicle.
We present a pedestrian prediction model based on a Variational Conditional Auto-Encoder which incorporates multiple contextual cues.
arXiv Detail & Related papers (2020-12-15T16:52:49Z) - Towards Incorporating Contextual Knowledge into the Prediction of
Driving Behavior [5.345872343035626]
We investigate how predictions are affected by external conditions.
More precisely, we investigate how a state-of-the-art approach for lateral motion prediction is influenced by one selected external condition, namely the traffic density.
This study constitutes the first step towards the integration of such information into automated vehicles.
arXiv Detail & Related papers (2020-06-15T15:21:02Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.