Consciousness and Automated Reasoning
- URL: http://arxiv.org/abs/2001.09442v3
- Date: Wed, 22 Jul 2020 10:08:33 GMT
- Title: Consciousness and Automated Reasoning
- Authors: Ulrike Barthelme{\ss} and Ulrich Furbach and Claudia Schon
- Abstract summary: We show how a first-order logic reasoning system in combination with a large knowledge base can be understood as an artificial consciousness system.
We demonstrate that such a system is very well able to do conscious mind wandering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims at demonstrating how a first-order logic reasoning system in
combination with a large knowledge base can be understood as an artificial
consciousness system. For this we review some aspects from the area of
philosophy of mind and in particular Tononi's Information Integration Theory
(IIT) and Baars' Global Workspace Theory. These will be applied to the
reasoning system Hyper with ConceptNet as a knowledge base within a scenario of
commonsense and cognitive reasoning. Finally we demonstrate that such a system
is very well able to do conscious mind wandering.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks [15.837316393474403]
Concepts can act as a natural link between learning and reasoning.
Knowledge can not only be extracted from neural networks but concept knowledge can also be inserted into neural network architectures.
arXiv Detail & Related papers (2023-10-18T11:08:02Z) - Consciousness in Artificial Intelligence: Insights from the Science of
Consciousness [31.991243430962054]
This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness.
We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory.
Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
arXiv Detail & Related papers (2023-08-17T00:10:16Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
We propose a framework to enhance existing models (backbones) in a principled way by explicit knowledge learning.
In LeAp, we perform knowledge learning in a novel problem-knowledge-expression paradigm.
We show that LeAp improves all backbones' performances, learns accurate knowledge, and achieves a more interpretable reasoning process.
arXiv Detail & Related papers (2023-02-11T15:15:41Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - A Theory of Consciousness from a Theoretical Computer Science
Perspective: Insights from the Conscious Turing Machine [0.34265828682659694]
We look at consciousness from the perspective of theoretical computer science (TCS)
In the spirit of Alan Turing's simple yet powerful definition of a computer, the Turing Machine (TM), and perspective of computational complexity theory, we formalize a modified version of the Global Workspace Theory (GWT) of consciousness.
We do this by defining the Conscious Turing Machine (CTM), also called a conscious AI, and then we define consciousness and related notions in the CTM.
arXiv Detail & Related papers (2021-07-29T01:47:52Z) - Interpretable Reinforcement Learning Inspired by Piaget's Theory of
Cognitive Development [1.7778609937758327]
This paper entertains the idea that theories such as language of thought hypothesis (LOTH), script theory, and Piaget's cognitive development theory provide complementary approaches.
The proposed framework can be viewed as a step towards achieving human-like cognition in artificial intelligent systems.
arXiv Detail & Related papers (2021-02-01T00:29:01Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - The Evolution of Concept-Acquisition based on Developmental Psychology [4.416484585765028]
A conceptual system with rich connotation is key to improving the performance of knowledge-based artificial intelligence systems.
Finding a new method to represent concepts and construct a conceptual system will greatly improve the performance of many intelligent systems.
Developmental psychology carefully observes the process of concept acquisition in humans at the behavioral level.
arXiv Detail & Related papers (2020-11-26T01:57:24Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.