Ensemble Noise Simulation to Handle Uncertainty about Gradient-based
Adversarial Attacks
- URL: http://arxiv.org/abs/2001.09486v1
- Date: Sun, 26 Jan 2020 17:12:47 GMT
- Title: Ensemble Noise Simulation to Handle Uncertainty about Gradient-based
Adversarial Attacks
- Authors: Rehana Mahfuz, Rajeev Sahay, Aly El Gamal
- Abstract summary: A gradient-based adversarial attack on neural networks can be crafted in a variety of ways by varying how the attack algorithm relies on the gradient.
Most recent work has focused on defending classifiers in a case where there is no uncertainty about the attacker's behavior.
We fill this gap by simulating the attacker's noisy perturbation using a variety of attack algorithms based on gradients of various classifiers.
We demonstrate significant improvements in post-attack accuracy, using our proposed ensemble-trained defense.
- Score: 5.4572790062292125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-based adversarial attacks on neural networks can be crafted in a
variety of ways by varying either how the attack algorithm relies on the
gradient, the network architecture used for crafting the attack, or both. Most
recent work has focused on defending classifiers in a case where there is no
uncertainty about the attacker's behavior (i.e., the attacker is expected to
generate a specific attack using a specific network architecture). However, if
the attacker is not guaranteed to behave in a certain way, the literature lacks
methods in devising a strategic defense. We fill this gap by simulating the
attacker's noisy perturbation using a variety of attack algorithms based on
gradients of various classifiers. We perform our analysis using a
pre-processing Denoising Autoencoder (DAE) defense that is trained with the
simulated noise. We demonstrate significant improvements in post-attack
accuracy, using our proposed ensemble-trained defense, compared to a situation
where no effort is made to handle uncertainty.
Related papers
- Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
Adversarial attacks on deep learning models pose a serious threat to their reliability and security.
We propose a new defense mechanism that is rooted on hyperspace projection.
We show that our solution increases the robustness of deep learning models against adversarial attacks.
arXiv Detail & Related papers (2023-06-21T10:17:55Z) - Adversary Aware Continual Learning [3.3439097577935213]
Adversary can introduce small amount of misinformation to the model to cause deliberate forgetting of a specific task or class at test time.
We use the attacker's primary strength-hiding the backdoor pattern by making it imperceptible to humans-against it, and propose to learn a perceptible (stronger) pattern that can overpower the attacker's imperceptible pattern.
We show that our proposed defensive framework considerably improves the performance of class incremental learning algorithms with no knowledge of the attacker's target task, attacker's target class, and attacker's imperceptible pattern.
arXiv Detail & Related papers (2023-04-27T19:49:50Z) - Detection and Mitigation of Byzantine Attacks in Distributed Training [24.951227624475443]
An abnormal Byzantine behavior of the worker nodes can derail the training and compromise the quality of the inference.
Recent work considers a wide range of attack models and has explored robust aggregation and/or computational redundancy to correct the distorted gradients.
In this work, we consider attack models ranging from strong ones: $q$ omniscient adversaries with full knowledge of the defense protocol that can change from iteration to iteration to weak ones: $q$ randomly chosen adversaries with limited collusion abilities.
arXiv Detail & Related papers (2022-08-17T05:49:52Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
Adversarial attacks perturb images such that a deep neural network produces incorrect classification results.
A promising approach to defend against adversarial attacks on natural multi-object scenes is to impose a context-consistency check.
We present the first approach for generating context-consistent adversarial attacks that can evade the context-consistency check.
arXiv Detail & Related papers (2022-03-29T04:33:06Z) - Identification of Attack-Specific Signatures in Adversarial Examples [62.17639067715379]
We show that different attack algorithms produce adversarial examples which are distinct not only in their effectiveness but also in how they qualitatively affect their victims.
Our findings suggest that prospective adversarial attacks should be compared not only via their success rates at fooling models but also via deeper downstream effects they have on victims.
arXiv Detail & Related papers (2021-10-13T15:40:48Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
Sparse adversarial attacks can fool deep networks (DNNs) by only perturbing a few pixels.
Recent efforts combine it with another l_infty perturbation on magnitudes.
We propose a homotopy algorithm to tackle the sparsity and neural perturbation framework.
arXiv Detail & Related papers (2021-06-10T20:11:36Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
Deep neural networks (DNNs) are vulnerable to adversarial noise.
adversarial robustness can be improved by exploiting adversarial examples.
Models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples.
arXiv Detail & Related papers (2021-06-09T12:49:54Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Attack Agnostic Adversarial Defense via Visual Imperceptible Bound [70.72413095698961]
This research aims to design a defense model that is robust within a certain bound against both seen and unseen adversarial attacks.
The proposed defense model is evaluated on the MNIST, CIFAR-10, and Tiny ImageNet databases.
The proposed algorithm is attack agnostic, i.e. it does not require any knowledge of the attack algorithm.
arXiv Detail & Related papers (2020-10-25T23:14:26Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.