DRMIME: Differentiable Mutual Information and Matrix Exponential for
Multi-Resolution Image Registration
- URL: http://arxiv.org/abs/2001.09865v1
- Date: Mon, 27 Jan 2020 15:38:46 GMT
- Title: DRMIME: Differentiable Mutual Information and Matrix Exponential for
Multi-Resolution Image Registration
- Authors: Abhishek Nan, Matthew Tennant, Uriel Rubin and Nilanjan Ray
- Abstract summary: We present a novel unsupervised image registration algorithm.
It is differentiable end-to-end and can be used for both multi-modal and mono-modal registration.
- Score: 6.59529078336196
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we present a novel unsupervised image registration algorithm.
It is differentiable end-to-end and can be used for both multi-modal and
mono-modal registration. This is done using mutual information (MI) as a
metric. The novelty here is that rather than using traditional ways of
approximating MI, we use a neural estimator called MINE and supplement it with
matrix exponential for transformation matrix computation. This leads to
improved results as compared to the standard algorithms available
out-of-the-box in state-of-the-art image registration toolboxes.
Related papers
- Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
We propose a novel coarse-to-fine MDIR framework,LLM-Morph, for aligning the deep features from different modal medical images.
Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights.
Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task
arXiv Detail & Related papers (2024-08-20T09:58:30Z) - MAD: Modality Agnostic Distance Measure for Image Registration [14.558286801723293]
Multi-modal image registration is a crucial pre-processing step in many medical applications.
We present Modality Agnostic Distance (MAD), a measure that uses random convolutions to learn the inherent geometry of the images.
We demonstrate that not only can MAD affinely register multi-modal images successfully, but it has also a larger capture range than traditional measures.
arXiv Detail & Related papers (2023-09-06T09:59:58Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones.
Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model.
We propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis.
arXiv Detail & Related papers (2022-12-02T11:40:40Z) - Fast Differentiable Matrix Square Root and Inverse Square Root [65.67315418971688]
We propose two more efficient variants to compute the differentiable matrix square root and the inverse square root.
For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP), and the other method is to use Matrix Pad'e Approximants (MPA)
A series of numerical tests show that both methods yield considerable speed-up compared with the SVD or the NS iteration.
arXiv Detail & Related papers (2022-01-29T10:00:35Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
We propose a novel method, dubbed Cross-Modal Info-Max Hashing (CMIMH)
We learn informative representations that can preserve both intra- and inter-modal similarities.
The proposed method consistently outperforms other state-of-the-art cross-modal retrieval methods.
arXiv Detail & Related papers (2021-12-13T08:58:03Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
We propose to extend current learning-based image registration to allow simultaneous registration of multiple images.
We present a general mathematical framework that enables both registration of multiple images to their viscous geodesic average and registration in which any of the available images can be used as a fixed image.
arXiv Detail & Related papers (2020-10-01T07:37:28Z) - Ordinary Differential Equation and Complex Matrix Exponential for
Multi-resolution Image Registration [6.59529078336196]
In this work, we emphasize on using complex matrix exponential (CME) over real matrix exponential to compute transformation matrices.
CME is theoretically more suitable and practically provides faster convergence as our experiments show.
Our proposed method yields significantly better registration compared to a number of off-the-shelf, popular, state-of-the-art image registration toolboxes.
arXiv Detail & Related papers (2020-07-27T16:51:25Z) - A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine
Translation [131.33610549540043]
We propose a novel graph-based multi-modal fusion encoder for NMT.
We first represent the input sentence and image using a unified multi-modal graph.
We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations.
arXiv Detail & Related papers (2020-07-17T04:06:09Z) - MvMM-RegNet: A new image registration framework based on multivariate
mixture model and neural network estimation [14.36896617430302]
We propose a new image registration framework based on generative model (MvMM) and neural network estimation.
A generative model consolidating both appearance and anatomical information is established to derive a novel loss function capable of implementing groupwise registration.
We highlight the versatility of the proposed framework for various applications on multimodal cardiac images.
arXiv Detail & Related papers (2020-06-28T11:19:15Z) - CoMIR: Contrastive Multimodal Image Representation for Registration [4.543268895439618]
We propose contrastive coding to learn shared, dense image representations, referred to as CoMIRs (Contrastive Multimodal Image Representations)
CoMIRs enable the registration of multimodal images where existing registration methods often fail due to a lack of sufficiently similar image structures.
arXiv Detail & Related papers (2020-06-11T10:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.