Variational Autoencoders for Opponent Modeling in Multi-Agent Systems
- URL: http://arxiv.org/abs/2001.10829v1
- Date: Wed, 29 Jan 2020 13:38:59 GMT
- Title: Variational Autoencoders for Opponent Modeling in Multi-Agent Systems
- Authors: Georgios Papoudakis, Stefano V. Albrecht
- Abstract summary: Multi-agent systems exhibit complex behaviors that emanate from the interactions of multiple agents in a shared environment.
In this work, we are interested in controlling one agent in a multi-agent system and successfully learn to interact with the other agents that have fixed policies.
Modeling the behavior of other agents (opponents) is essential in understanding the interactions of the agents in the system.
- Score: 9.405879323049659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent systems exhibit complex behaviors that emanate from the
interactions of multiple agents in a shared environment. In this work, we are
interested in controlling one agent in a multi-agent system and successfully
learn to interact with the other agents that have fixed policies. Modeling the
behavior of other agents (opponents) is essential in understanding the
interactions of the agents in the system. By taking advantage of recent
advances in unsupervised learning, we propose modeling opponents using
variational autoencoders. Additionally, many existing methods in the literature
assume that the opponent models have access to opponent's observations and
actions during both training and execution. To eliminate this assumption, we
propose a modification that attempts to identify the underlying opponent model
using only local information of our agent, such as its observations, actions,
and rewards. The experiments indicate that our opponent modeling methods
achieve equal or greater episodic returns in reinforcement learning tasks
against another modeling method.
Related papers
- Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
Agent modeling is essential when designing adaptive policies for intelligent machine agents in multiagent systems.
We devised a Contrastive Learning-based Agent Modeling (CLAM) method that relies only on the local observations from the ego agent during training and execution.
CLAM is capable of generating consistent high-quality policy representations in real-time right from the beginning of each episode.
arXiv Detail & Related papers (2023-12-30T03:44:12Z) - Fact-based Agent modeling for Multi-Agent Reinforcement Learning [6.431977627644292]
Fact-based Agent modeling (FAM) method is proposed in which fact-based belief inference (FBI) network models other agents in partially observable environment only based on its local information.
We evaluate FAM on various Multiagent Particle Environment (MPE) and compare the results with several state-of-the-art MARL algorithms.
arXiv Detail & Related papers (2023-10-18T19:43:38Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning.
We propose MADiff, a novel generative multi-agent learning framework to tackle this problem.
Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Interaction Modeling with Multiplex Attention [17.04973256281265]
We introduce a method for accurately modeling multi-agent systems.
We show that our approach outperforms state-of-the-art models in trajectory forecasting and relation inference.
arXiv Detail & Related papers (2022-08-23T00:29:18Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
The optimal adaptive behaviour under uncertainty over the other agents' strategies can be computed using the Interactive Bayesian Reinforcement Learning framework.
We propose to meta-learn approximate belief inference and Bayes-optimal behaviour for a given prior.
We show empirically that our approach outperforms existing methods that use a model-free approach, sample from the approximate posterior, maintain memory-free models of others, or do not fully utilise the known structure of the environment.
arXiv Detail & Related papers (2021-01-11T13:25:13Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z) - Learning to Model Opponent Learning [11.61673411387596]
Multi-Agent Reinforcement Learning (MARL) considers settings in which a set of coexisting agents interact with one another and their environment.
This poses a great challenge for value function-based algorithms whose convergence usually relies on the assumption of a stationary environment.
We develop a novel approach to modelling an opponent's learning dynamics which we term Learning to Model Opponent Learning (LeMOL)
arXiv Detail & Related papers (2020-06-06T17:19:04Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.