A Graph-Based Approach for Active Learning in Regression
- URL: http://arxiv.org/abs/2001.11143v1
- Date: Thu, 30 Jan 2020 00:59:43 GMT
- Title: A Graph-Based Approach for Active Learning in Regression
- Authors: Hongjing Zhang, S. S. Ravi, Ian Davidson
- Abstract summary: Active learning aims to reduce labeling efforts by selectively asking humans to annotate the most important data points from an unlabeled pool.
Most existing active learning for regression methods use the regression function learned at each active learning iteration to select the next informative point to query.
We propose a feature-focused approach that formulates both sequential and batch-mode active regression as a novel bipartite graph optimization problem.
- Score: 37.42533189350655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning aims to reduce labeling efforts by selectively asking humans
to annotate the most important data points from an unlabeled pool and is an
example of human-machine interaction. Though active learning has been
extensively researched for classification and ranking problems, it is
relatively understudied for regression problems. Most existing active learning
for regression methods use the regression function learned at each active
learning iteration to select the next informative point to query. This
introduces several challenges such as handling noisy labels, parameter
uncertainty and overcoming initially biased training data. Instead, we propose
a feature-focused approach that formulates both sequential and batch-mode
active regression as a novel bipartite graph optimization problem. We conduct
experiments on both noise-free and noisy settings. Our experimental results on
benchmark data sets demonstrate the effectiveness of our proposed approach.
Related papers
- Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Model Uncertainty based Active Learning on Tabular Data using Boosted
Trees [0.4667030429896303]
Supervised machine learning relies on the availability of good labelled data for model training.
Active learning is a sub-field of machine learning which helps in obtaining the labelled data efficiently.
arXiv Detail & Related papers (2023-10-30T14:29:53Z) - Streaming Active Learning for Regression Problems Using Regression via
Classification [12.572218568705376]
We propose to use the regression-via-classification framework for streaming active learning for regression.
Regression-via-classification transforms regression problems into classification problems so that streaming active learning methods can be applied directly to regression problems.
arXiv Detail & Related papers (2023-09-02T20:24:24Z) - Active Learning with Combinatorial Coverage [0.0]
Active learning is a practical field of machine learning that automates the process of selecting which data to label.
Current methods are effective in reducing the burden of data labeling but are heavily model-reliant.
This has led to the inability of sampled data to be transferred to new models as well as issues with sampling bias.
We propose active learning methods utilizing coverage to overcome these issues.
arXiv Detail & Related papers (2023-02-28T13:43:23Z) - Iterative Loop Learning Combining Self-Training and Active Learning for
Domain Adaptive Semantic Segmentation [1.827510863075184]
Self-training and active learning have been proposed to alleviate this problem.
This paper proposes an iterative loop learning method combining Self-Training and Active Learning.
arXiv Detail & Related papers (2023-01-31T01:31:43Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
We show that across 5 models and 4 datasets on the task of visual question answering, a wide variety of active learning approaches fail to outperform random selection.
We identify the problem as collective outliers -- groups of examples that active learning methods prefer to acquire but models fail to learn.
We show that active learning sample efficiency increases significantly as the number of collective outliers in the active learning pool decreases.
arXiv Detail & Related papers (2021-07-06T00:52:11Z) - Learning to Rank for Active Learning: A Listwise Approach [36.72443179449176]
Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications.
In this work, we rethink the structure of the loss prediction module, using a simple but effective listwise approach.
Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
arXiv Detail & Related papers (2020-07-31T21:05:16Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.