Hybrid Tiled Convolutional Neural Networks for Text Sentiment
Classification
- URL: http://arxiv.org/abs/2001.11857v1
- Date: Fri, 31 Jan 2020 14:08:15 GMT
- Title: Hybrid Tiled Convolutional Neural Networks for Text Sentiment
Classification
- Authors: Maria Mihaela Trusca and Gerasimos Spanakis
- Abstract summary: We adjust the architecture of the tiled convolutional neural network (tiled CNN) to improve its extraction of salient features for sentiment analysis.
Knowing that the major drawback of the tiled CNN in the NLP field is its inflexible filter structure, we propose a novel architecture called hybrid tiled CNN.
Experiments on the datasets of IMDB movie reviews and SemEval 2017 demonstrate the efficiency of the hybrid tiled CNN.
- Score: 3.0204693431381515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The tiled convolutional neural network (tiled CNN) has been applied only to
computer vision for learning invariances. We adjust its architecture to NLP to
improve the extraction of the most salient features for sentiment analysis.
Knowing that the major drawback of the tiled CNN in the NLP field is its
inflexible filter structure, we propose a novel architecture called hybrid
tiled CNN that applies a filter only on the words that appear in the similar
contexts and on their neighbor words (a necessary step for preventing the loss
of some n-grams). The experiments on the datasets of IMDB movie reviews and
SemEval 2017 demonstrate the efficiency of the hybrid tiled CNN that performs
better than both CNN and tiled CNN.
Related papers
- A Neurosymbolic Framework for Bias Correction in Convolutional Neural Networks [2.249916681499244]
We introduce a neurosymbolic framework called NeSyBiCor for bias correction in a trained CNN.
We show that our framework successfully corrects the biases of CNNs trained with subsets of classes from the "Places" dataset.
arXiv Detail & Related papers (2024-05-24T19:09:53Z) - Understanding and Improving CNNs with Complex Structure Tensor: A Biometrics Study [47.03015281370405]
We show that the use of Complex Structure, which contains compact orientation features with certainties, improves identification accuracy compared to using grayscale inputs alone.
This suggests that the upfront use of orientation features in CNNs, a strategy seen in mammalian vision, not only mitigates their limitations but also enhances their explainability and relevance to thin-clients.
arXiv Detail & Related papers (2024-04-24T02:51:13Z) - OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - PICNN: A Pathway towards Interpretable Convolutional Neural Networks [12.31424771480963]
We introduce a novel pathway to alleviate the entanglement between filters and image classes.
We use the Bernoulli sampling to generate the filter-cluster assignment matrix from a learnable filter-class correspondence matrix.
We evaluate the effectiveness of our method on ten widely used network architectures.
arXiv Detail & Related papers (2023-12-19T11:36:03Z) - SECNN: Squeeze-and-Excitation Convolutional Neural Network for Sentence
Classification [0.0]
Convolution neural network (CNN) has the ability to extract n-grams features through convolutional filters.
We propose a Squeeze-and-Excitation Convolutional neural Network (SECNN) for sentence classification.
arXiv Detail & Related papers (2023-12-11T03:26:36Z) - A novel feature-scrambling approach reveals the capacity of
convolutional neural networks to learn spatial relations [0.0]
Convolutional neural networks (CNNs) are one of the most successful computer vision systems to solve object recognition.
Yet it remains poorly understood how CNNs actually make their decisions, what the nature of their internal representations is, and how their recognition strategies differ from humans.
arXiv Detail & Related papers (2022-12-12T16:40:29Z) - Demystifying CNNs for Images by Matched Filters [13.121514086503591]
convolution neural networks (CNN) have been revolutionising the way we approach and use intelligent machines in the Big Data era.
CNNs have been put under scrutiny owing to their textitblack-box nature, as well as the lack of theoretical support and physical meanings of their operation.
This paper attempts to demystify the operation of CNNs by employing the perspective of matched filtering.
arXiv Detail & Related papers (2022-10-16T12:39:17Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Exploring Deep Hybrid Tensor-to-Vector Network Architectures for
Regression Based Speech Enhancement [53.47564132861866]
We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size.
CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality.
arXiv Detail & Related papers (2020-07-25T22:21:05Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.