Post-Training Piecewise Linear Quantization for Deep Neural Networks
- URL: http://arxiv.org/abs/2002.00104v2
- Date: Wed, 18 Mar 2020 18:49:40 GMT
- Title: Post-Training Piecewise Linear Quantization for Deep Neural Networks
- Authors: Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios
Georgiadis, Joseph Hassoun
- Abstract summary: Quantization plays an important role in the energy-efficient deployment of deep neural networks on resource-limited devices.
We propose a piecewise linear quantization scheme to enable accurate approximation for tensor values that have bell-shaped distributions with long tails.
Compared to state-of-the-art post-training quantization methods, our proposed method achieves superior performance on image classification, semantic segmentation, and object detection with minor overhead.
- Score: 13.717228230596167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization plays an important role in the energy-efficient deployment of
deep neural networks on resource-limited devices. Post-training quantization is
highly desirable since it does not require retraining or access to the full
training dataset. The well-established uniform scheme for post-training
quantization achieves satisfactory results by converting neural networks from
full-precision to 8-bit fixed-point integers. However, it suffers from
significant performance degradation when quantizing to lower bit-widths. In
this paper, we propose a piecewise linear quantization (PWLQ) scheme to enable
accurate approximation for tensor values that have bell-shaped distributions
with long tails. Our approach breaks the entire quantization range into
non-overlapping regions for each tensor, with each region being assigned an
equal number of quantization levels. Optimal breakpoints that divide the entire
range are found by minimizing the quantization error. Compared to
state-of-the-art post-training quantization methods, experimental results show
that our proposed method achieves superior performance on image classification,
semantic segmentation, and object detection with minor overhead.
Related papers
- BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
Quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation.
Extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures results in severe performance degeneration.
This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration.
arXiv Detail & Related papers (2022-07-04T13:25:49Z) - Quantune: Post-training Quantization of Convolutional Neural Networks
using Extreme Gradient Boosting for Fast Deployment [15.720551497037176]
We propose an auto-tuner known as Quantune to accelerate the search for the configurations of quantization.
We show that Quantune reduces the search time for quantization by approximately 36.5x with an accuracy loss of 0.07 0.65% across six CNN models.
arXiv Detail & Related papers (2022-02-10T14:05:02Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
We modify a post-training neural-network quantization method, GPFQ, that is based on a greedy path-following mechanism.
We prove that for quantizing a single-layer network, the relative square error essentially decays linearly in the number of weights.
arXiv Detail & Related papers (2022-01-26T18:47:38Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - In-Hindsight Quantization Range Estimation for Quantized Training [5.65658124285176]
We propose a simple alternative to dynamic quantization, in-hindsight range estimation, that uses the quantization ranges estimated on previous iterations to quantize the present.
Our approach enables fast static quantization of gradients and activations while requiring only minimal hardware support from the neural network accelerator.
It is intended as a drop-in replacement for estimating quantization ranges and can be used in conjunction with other advances in quantized training.
arXiv Detail & Related papers (2021-05-10T10:25:28Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
This paper proposes two novel techniques to train deep convolutional neural networks with low bit-width weights and activations.
First, to obtain low bit-width weights, most existing methods obtain the quantized weights by performing quantization on the full-precision network weights.
Second, to obtain low bit-width activations, existing works consider all channels equally.
arXiv Detail & Related papers (2020-12-26T15:21:18Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs.
Existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance.
We propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision.
arXiv Detail & Related papers (2020-12-21T10:19:42Z) - Recurrence of Optimum for Training Weight and Activation Quantized
Networks [4.103701929881022]
Training deep learning models with low-precision weights and activations involves a demanding optimization task.
We show how to overcome the nature of network quantization.
We also show numerical evidence of the recurrence phenomenon of weight evolution in training quantized deep networks.
arXiv Detail & Related papers (2020-12-10T09:14:43Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
Quantized neural networks with low-bit weights and activations are attractive for developing AI accelerators.
We present to regard the discrete weights in an arbitrary quantized neural network as searchable variables, and utilize a differential method to search them accurately.
arXiv Detail & Related papers (2020-09-18T09:13:26Z) - Optimal Gradient Quantization Condition for Communication-Efficient
Distributed Training [99.42912552638168]
Communication of gradients is costly for training deep neural networks with multiple devices in computer vision applications.
In this work, we deduce the optimal condition of both the binary and multi-level gradient quantization for textbfANY gradient distribution.
Based on the optimal condition, we develop two novel quantization schemes: biased BinGrad and unbiased ORQ for binary and multi-level gradient quantization respectively.
arXiv Detail & Related papers (2020-02-25T18:28:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.