Explain Graph Neural Networks to Understand Weighted Graph Features in
Node Classification
- URL: http://arxiv.org/abs/2002.00514v1
- Date: Sun, 2 Feb 2020 23:53:21 GMT
- Title: Explain Graph Neural Networks to Understand Weighted Graph Features in
Node Classification
- Authors: Xiaoxiao Li and Joao Saude
- Abstract summary: We propose new graph features' explanation methods to identify the informative components and important node features.
Our results demonstrate that our explanation approach can mimic data patterns used for node classification by human interpretation.
- Score: 15.41200827860072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real data collected from different applications that have additional
topological structures and connection information are amenable to be
represented as a weighted graph. Considering the node labeling problem, Graph
Neural Networks (GNNs) is a powerful tool, which can mimic experts' decision on
node labeling. GNNs combine node features, connection patterns, and graph
structure by using a neural network to embed node information and pass it
through edges in the graph. We want to identify the patterns in the input data
used by the GNN model to make a decision and examine if the model works as we
desire. However, due to the complex data representation and non-linear
transformations, explaining decisions made by GNNs is challenging. In this
work, we propose new graph features' explanation methods to identify the
informative components and important node features. Besides, we propose a
pipeline to identify the key factors used for node classification. We use four
datasets (two synthetic and two real) to validate our methods. Our results
demonstrate that our explanation approach can mimic data patterns used for node
classification by human interpretation and disentangle different features in
the graphs. Furthermore, our explanation methods can be used for understanding
data, debugging GNN models, and examine model decisions.
Related papers
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
Graph Neural Network (GNN) with the main idea of encoding graph structure information of graphs by propagation and aggregation has developed rapidly.
It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs.
For the phenomenon of performance degradation in deep GNNs, we propose a new perspective.
arXiv Detail & Related papers (2024-07-03T02:40:39Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
We propose the Saliency-Aware Regularized Graph Neural Network (SAR-GNN) for graph classification.
We first estimate the global node saliency by measuring the semantic similarity between the compact graph representation and node features.
Then the learned saliency distribution is leveraged to regularize the neighborhood aggregation of the backbone.
arXiv Detail & Related papers (2024-01-01T13:44:16Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - CopulaGNN: Towards Integrating Representational and Correlational Roles
of Graphs in Graph Neural Networks [23.115288017590093]
We investigate how Graph Neural Network (GNN) models can effectively leverage both types of information.
The proposed Copula Graph Neural Network (CopulaGNN) can take a wide range of GNN models as base models.
arXiv Detail & Related papers (2020-10-05T15:20:04Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - GraphLIME: Local Interpretable Model Explanations for Graph Neural
Networks [45.824642013383944]
Graph neural networks (GNN) were shown to be successful in effectively representing graph structured data.
We propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso.
arXiv Detail & Related papers (2020-01-17T09:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.