Centimeter-Level Indoor Localization using Channel State Information
with Recurrent Neural Networks
- URL: http://arxiv.org/abs/2002.01411v1
- Date: Tue, 4 Feb 2020 17:10:18 GMT
- Title: Centimeter-Level Indoor Localization using Channel State Information
with Recurrent Neural Networks
- Authors: Jianyuan Yu, R. Michael Buehrer
- Abstract summary: This paper proposes the neural network method to estimate the centimeter-level indoor positioning with real CSI data collected from linear antennas.
It utilizes an amplitude of channel response or a correlation matrix as the input, which can highly reduce the data size and suppress the noise.
Also, it makes use of the consistency in the user motion trajectory via Recurrent Neural Network (RNN) and signal-noise ratio (SNR) information, which can further improve the estimation accuracy.
- Score: 12.193558591962754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern techniques in the Internet of Things or autonomous driving require
more accuracy positioning ever. Classic location techniques mainly adapt to
outdoor scenarios, while they do not meet the requirement of indoor cases with
multiple paths. Meanwhile as a feature robust to noise and time variations,
Channel State Information (CSI) has shown its advantages over Received Signal
Strength Indicator (RSSI) at more accurate positioning. To this end, this paper
proposes the neural network method to estimate the centimeter-level indoor
positioning with real CSI data collected from linear antennas. It utilizes an
amplitude of channel response or a correlation matrix as the input, which can
highly reduce the data size and suppress the noise. Also, it makes use of the
consistency in the user motion trajectory via Recurrent Neural Network (RNN)
and signal-noise ratio (SNR) information, which can further improve the
estimation accuracy, especially in small datasize learning. These contributions
all benefit the efficiency of the neural network, based on the results with
other classic supervised learning methods.
Related papers
- NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
This paper presents neural networks for network intrusion detection systems (NIDS) that operate on flow data preprocessed with a time window.
It requires only eleven features which do not rely on deep packet inspection and can be found in most NIDS datasets and easily obtained from conventional flow collectors.
The reported training accuracy exceeds 99% for the proposed method with as little as twenty neural network input features.
arXiv Detail & Related papers (2024-10-24T11:36:19Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Autoregressive Attention Neural Networks for Non-Line-of-Sight User
Tracking with Dynamic Metasurface Antennas [20.416982017315014]
We present a two-stage machine-learning-based approach for user tracking, specifically designed for non-LoS multipath settings.
A newly proposed attention-based Neural Network (NN) is first trained to map noisy channel responses to potential user positions.
As a second stage, the NN's predictions for the past user positions are passed through a learnable autoregressive model.
arXiv Detail & Related papers (2023-10-30T17:38:16Z) - Model-based learning for location-to-channel mapping [0.0]
This paper presents a frugal, model-based network that separates the low frequency from the high frequency components of the target mapping function.
This yields an hypernetwork architecture where the neural network only learns low frequency sparse coefficients in a dictionary of high frequency components.
Simulation results show that the proposed neural network outperforms standard approaches on realistic synthetic data.
arXiv Detail & Related papers (2023-08-28T07:39:53Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - CONet: Channel Optimization for Convolutional Neural Networks [33.58529066005248]
We study channel size optimization in convolutional neural networks (CNN)
We introduce an efficient dynamic scaling algorithm -- CONet -- that automatically optimize channel sizes across network layers for a given CNN.
We conduct experiments on CIFAR10/100 and ImageNet datasets and show that CONet can find efficient and accurate architectures searched in ResNet, DARTS, and DARTS+ spaces.
arXiv Detail & Related papers (2021-08-15T21:48:25Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.