Anomaly Detection by One Class Latent Regularized Networks
- URL: http://arxiv.org/abs/2002.01607v2
- Date: Tue, 14 Jul 2020 06:30:49 GMT
- Title: Anomaly Detection by One Class Latent Regularized Networks
- Authors: Chengwei Chen and Pan Chen and Haichuan Song and Yiqing Tao and Yuan
Xie and Shouhong Ding and Lizhuang Ma
- Abstract summary: Semi-supervised Generative Adversarial Networks (GAN)-based methods have been gaining popularity in anomaly detection task recently.
A novel adversarial dual autoencoder network is proposed, in which the underlying structure of training data is captured in latent feature space.
Experiments show that our model achieves the state-of-the-art results on MNIST and CIFAR10 datasets as well as GTSRB stop signs dataset.
- Score: 36.67420338535258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a fundamental problem in computer vision area with many
real-world applications. Given a wide range of images belonging to the normal
class, emerging from some distribution, the objective of this task is to
construct the model to detect out-of-distribution images belonging to abnormal
instances. Semi-supervised Generative Adversarial Networks (GAN)-based methods
have been gaining popularity in anomaly detection task recently. However, the
training process of GAN is still unstable and challenging. To solve these
issues, a novel adversarial dual autoencoder network is proposed, in which the
underlying structure of training data is not only captured in latent feature
space, but also can be further restricted in the space of latent representation
in a discriminant manner, leading to a more accurate detector. In addition, the
auxiliary autoencoder regarded as a discriminator could obtain an more stable
training process. Experiments show that our model achieves the state-of-the-art
results on MNIST and CIFAR10 datasets as well as GTSRB stop signs dataset.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
Existing generative adversarial networks (GANs) are primarily used for creating synthetic samples from reals.
In our proposed method, we construct the trained encoder-discriminator as a one-class classifier based on Bidirectional GAN (Bi-GAN)
Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks.
arXiv Detail & Related papers (2022-02-02T23:51:11Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.