Synthesizing three-body interaction of spin chirality with
superconducting qubits
- URL: http://arxiv.org/abs/2002.01951v1
- Date: Wed, 5 Feb 2020 19:06:05 GMT
- Title: Synthesizing three-body interaction of spin chirality with
superconducting qubits
- Authors: Wuxin Liu, Wei Feng, Wenhui Ren, Da-Wei Wang, and Haohua Wang
- Abstract summary: We propose and experimentally synthesize the three-body spin-chirality interaction in a superconducting circuit based on Floquet engineering.
Our result is a step toward engineering dynamical and many-body interactions in multiqubit superconducting devices.
- Score: 10.567608076469087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superconducting qubits provide a competitive platform for quantum simulation
of complex dynamics that lies at the heart of quantum many-body systems,
because of the flexibility and scalability afforded by the nature of
microfabrication. However, in a multiqubit device, the physical form of
couplings between qubits is either an electric (capacitor) or magnetic field
(inductor), and the associated quadratic field energy determines that only
two-body interaction in the Hamiltonian can be directly realized. Here we
propose and experimentally synthesize the three-body spin-chirality interaction
in a superconducting circuit based on Floquet engineering. By periodically
modulating the resonant frequencies of the qubits connected with each other via
capacitors, we can dynamically turn on and off qubit-qubit couplings, and
further create chiral flows of the excitations in the three-qubit circular
loop. Our result is a step toward engineering dynamical and many-body
interactions in multiqubit superconducting devices, which potentially expands
the degree of freedom in quantum simulation tasks.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Chiral coupling between a ferromagnetic magnon and a superconducting
qubit [0.0]
Chiral coupling at the single-quantum level promises to be a remarkable potential for quantum information processing.
We propose to achieve a chiral interaction between a magnon mode in a ferromagnetic sphere and a superconducting qubit mediated by a one-dimensional coupled-cavity array.
arXiv Detail & Related papers (2022-11-10T01:34:10Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum dynamics of disordered arrays of interacting superconducting
qubits: signatures of quantum collective states [0.0]
We study theoretically the collective quantum dynamics occurring in superconducting qubits arrays.
Even a weak interaction between qubits can overcome the disorder with a simultaneous formation of the collective excited states.
arXiv Detail & Related papers (2021-11-29T17:35:43Z) - Mediated interactions beyond the nearest neighbor in an array of
superconducting qubits [0.0]
We consider mediated interactions in an array of floating transmons, where each qubit capacitor consists of two superconducting pads galvanically isolated from ground.
extraneous modes can generate coupling between the qubit modes that extends beyond the nearest neighbor.
arXiv Detail & Related papers (2021-10-04T20:14:39Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.