Supervised Learning on Relational Databases with Graph Neural Networks
- URL: http://arxiv.org/abs/2002.02046v1
- Date: Thu, 6 Feb 2020 00:57:39 GMT
- Title: Supervised Learning on Relational Databases with Graph Neural Networks
- Authors: Milan Cvitkovic
- Abstract summary: Training machine learning models on data stored in relational databases requires significant data extraction and feature engineering efforts.
We introduce a method that uses Graph Neural Networks to overcome these challenges.
Our proposed method outperforms state-of-the-art automatic feature engineering methods on two out of three datasets.
- Score: 10.279748604797911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The majority of data scientists and machine learning practitioners use
relational data in their work [State of ML and Data Science 2017, Kaggle,
Inc.]. But training machine learning models on data stored in relational
databases requires significant data extraction and feature engineering efforts.
These efforts are not only costly, but they also destroy potentially important
relational structure in the data. We introduce a method that uses Graph Neural
Networks to overcome these challenges. Our proposed method outperforms
state-of-the-art automatic feature engineering methods on two out of three
datasets.
Related papers
- Research and Implementation of Data Enhancement Techniques for Graph Neural Networks [10.575426305555538]
In practical engineering applications, some data are affected by the conditions under which more data cannot be obtained or the cost of obtaining data is too high.
This paper firstly analyses the key points of the data enhancement technology of graph neural network, and at the same time introduces the composition of graph neural network in depth.
arXiv Detail & Related papers (2024-06-18T14:07:38Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
We introduce an end-to-end representation approach to learn on data laid out across multiple tables.
Message Passing Graph Neural Networks can then automatically learn across the graph to extract representations that leverage all data input.
arXiv Detail & Related papers (2023-12-07T18:51:41Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
We propose a novel framework called Graph-based Feature Synthesis (GFS)
GFS formulates relational database as a heterogeneous graph database.
In an experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases.
arXiv Detail & Related papers (2023-12-04T16:54:40Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - On the Pitfalls of Learning with Limited Data: A Facial Expression
Recognition Case Study [0.5249805590164901]
We focus on the problem of Facial Expression Recognition from videos.
We performed an extensive study with four databases at a different complexity and nine deep-learning architectures for video classification.
We found that complex training sets translate better to more stable test sets when trained with transfer learning and synthetically generated data.
arXiv Detail & Related papers (2021-04-02T18:53:41Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
We bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a trained network.
We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples.
We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance.
arXiv Detail & Related papers (2019-12-27T02:05:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.