Solving high-dimensional eigenvalue problems using deep neural networks:
A diffusion Monte Carlo like approach
- URL: http://arxiv.org/abs/2002.02600v2
- Date: Thu, 16 Jul 2020 03:34:03 GMT
- Title: Solving high-dimensional eigenvalue problems using deep neural networks:
A diffusion Monte Carlo like approach
- Authors: Jiequn Han, Jianfeng Lu, Mo Zhou
- Abstract summary: The eigenvalue problem is reformulated as a fixed point problem of the semigroup flow induced by the operator.
The method shares a similar spirit with diffusion Monte Carlo but augments a direct approximation to the eigenfunction through neural-network ansatz.
Our approach is able to provide accurate eigenvalue and eigenfunction approximations in several numerical examples.
- Score: 14.558626910178127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method to solve eigenvalue problems for linear and
semilinear second order differential operators in high dimensions based on deep
neural networks. The eigenvalue problem is reformulated as a fixed point
problem of the semigroup flow induced by the operator, whose solution can be
represented by Feynman-Kac formula in terms of forward-backward stochastic
differential equations. The method shares a similar spirit with diffusion Monte
Carlo but augments a direct approximation to the eigenfunction through
neural-network ansatz. The criterion of fixed point provides a natural loss
function to search for parameters via optimization. Our approach is able to
provide accurate eigenvalue and eigenfunction approximations in several
numerical examples, including Fokker-Planck operator and the linear and
nonlinear Schr\"odinger operators in high dimensions.
Related papers
- Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems [13.285775352653546]
This paper proposes a system of neural differential equations representing first- and second-order score functions along trajectories based on deep neural networks.
We reformulate the mean viscous field control (MFC) problem with individual noises into an unconstrained optimization problem framed by the proposed neural ODE system.
arXiv Detail & Related papers (2024-09-24T21:45:55Z) - Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
implicit gradient descent (IGD) outperforms the common gradient descent (GD) in handling certain multi-scale problems.
We show that IGD converges a globally optimal solution at a linear convergence rate.
arXiv Detail & Related papers (2024-07-03T06:10:41Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - On the Identification and Optimization of Nonsmooth Superposition
Operators in Semilinear Elliptic PDEs [3.045851438458641]
We study an infinite-dimensional optimization problem that aims to identify the Nemytskii operator in the nonlinear part of a prototypical semilinear elliptic partial differential equation (PDE)
In contrast to previous works, we consider this identification problem in a low-regularity regime in which the function inducing the Nemytskii operator is a-priori only known to be an element of $H leakyloc(mathbbR)$.
arXiv Detail & Related papers (2023-06-08T13:33:20Z) - From Kernel Methods to Neural Networks: A Unifying Variational
Formulation [25.6264886382888]
We present a unifying regularization functional that depends on an operator and on a generic Radon-domain norm.
Our framework offers guarantees of universal approximation for a broad family of regularization operators or, equivalently, for a wide variety of shallow neural networks.
arXiv Detail & Related papers (2022-06-29T13:13:53Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
Traditional nonparametric solutions based on the Nystr"om formula suffer from scalability issues.
Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions.
We show that these problems can be fixed by using a new series of objective functions that generalizes to space of supervised and unsupervised learning problems.
arXiv Detail & Related papers (2022-04-30T05:31:07Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.