Data Vision: Learning to See Through Algorithmic Abstraction
- URL: http://arxiv.org/abs/2002.03387v1
- Date: Sun, 9 Feb 2020 15:46:18 GMT
- Title: Data Vision: Learning to See Through Algorithmic Abstraction
- Authors: Samir Passi, Steven J. Jackson
- Abstract summary: Learning to see through data is central to contemporary forms of algorithmic knowledge production.
This paper examines how the often-divergent demands of mechanization and discretion manifest in data analytic learning environments.
- Score: 6.730787776951012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to see through data is central to contemporary forms of algorithmic
knowledge production. While often represented as a mechanical application of
rules, making algorithms work with data requires a great deal of situated work.
This paper examines how the often-divergent demands of mechanization and
discretion manifest in data analytic learning environments. Drawing on research
in CSCW and the social sciences, and ethnographic fieldwork in two data
learning environments, we show how an algorithm's application is seen sometimes
as a mechanical sequence of rules and at other times as an array of situated
decisions. Casting data analytics as a rule-based (rather than rule-bound)
practice, we show that effective data vision requires would-be analysts to
straddle the competing demands of formal abstraction and empirical contingency.
We conclude by discussing how the notion of data vision can help better
leverage the role of human work in data analytic learning, research, and
practice.
Related papers
- Exploiting Contextual Uncertainty of Visual Data for Efficient Training of Deep Models [0.65268245109828]
We introduce the notion of contextual diversity for active learning CDAL.
We propose a data repair algorithm to curate contextually fair data to reduce model bias.
We are working on developing image retrieval system for wildlife camera trap images and reliable warning system for poor quality rural roads.
arXiv Detail & Related papers (2024-11-04T09:43:33Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
We introduce a modular, flexible, yet user-friendly software framework specifically developed to streamline computational-driven data exploration for human behavior analysis.
Our primary objective is to democratize access to advanced computational methodologies, thereby enabling researchers across disciplines to engage in detailed behavioral analysis without the need for extensive technical proficiency.
arXiv Detail & Related papers (2024-07-18T11:28:52Z) - Towards Explainable Artificial Intelligence (XAI): A Data Mining
Perspective [35.620874971064765]
This work takes a "data-centric" view, examining how data collection, processing, and analysis contribute to explainable AI (XAI)
We categorize existing work into three categories subject to their purposes: interpretations of deep models, influences of training data, and insights of domain knowledge.
Specifically, we distill XAI methodologies into data mining operations on training and testing data across modalities.
arXiv Detail & Related papers (2024-01-09T06:27:09Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - A survey on datasets for fairness-aware machine learning [6.962333053044713]
A large variety of fairness-aware machine learning solutions have been proposed.
In this paper, we overview real-world datasets used for fairness-aware machine learning.
For a deeper understanding of bias and fairness in the datasets, we investigate the interesting relationships using exploratory analysis.
arXiv Detail & Related papers (2021-10-01T16:54:04Z) - Do Datasets Have Politics? Disciplinary Values in Computer Vision
Dataset Development [6.182409582844314]
We collect a corpus of about 500 computer vision datasets, from which we sampled 114 dataset publications across different vision tasks.
We discuss how computer vision datasets authors value efficiency at the expense of care; universality at the expense of contextuality; and model work at the expense of data work.
We conclude with suggestions on how to better incorporate silenced values into the dataset creation and curation process.
arXiv Detail & Related papers (2021-08-09T19:07:58Z) - Which Mutual-Information Representation Learning Objectives are
Sufficient for Control? [80.2534918595143]
Mutual information provides an appealing formalism for learning representations of data.
This paper formalizes the sufficiency of a state representation for learning and representing the optimal policy.
Surprisingly, we find that two of these objectives can yield insufficient representations given mild and common assumptions on the structure of the MDP.
arXiv Detail & Related papers (2021-06-14T10:12:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.