Graph Convolutional Gaussian Processes For Link Prediction
- URL: http://arxiv.org/abs/2002.04337v1
- Date: Tue, 11 Feb 2020 12:12:21 GMT
- Title: Graph Convolutional Gaussian Processes For Link Prediction
- Authors: Felix L. Opolka, Pietro Li\`o
- Abstract summary: Link prediction aims to reveal missing edges in a graph.
We introduce a variational inducing point method that places pseudo inputs on a graph-structured domain.
We evaluate our model on eight large graphs with up to thousands of nodes and report consistent improvements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction aims to reveal missing edges in a graph. We address this task
with a Gaussian process that is transformed using simplified graph convolutions
to better leverage the inductive bias of the domain. To scale the Gaussian
process model to large graphs, we introduce a variational inducing point method
that places pseudo inputs on a graph-structured domain. We evaluate our model
on eight large graphs with up to thousands of nodes and report consistent
improvements over existing Gaussian process models as well as competitive
performance when compared to state-of-the-art graph neural network approaches.
Related papers
- Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGress is a discrete denoising diffusion model for generating graphs with categorical node and edge attributes.
It achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement.
It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules.
arXiv Detail & Related papers (2022-09-29T12:55:03Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Evolving-Graph Gaussian Processes [20.065168755580558]
Existing approaches have focused on static structures, whereas many real graph data represent a dynamic structure, limiting the applications of GGPs.
We propose evolving-Graph Gaussian Processes (e-GGPs) to overcome this.
We demonstrate the benefits of e-GGPs over static graph Gaussian Process approaches.
arXiv Detail & Related papers (2021-06-29T07:16:04Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
A graph generative model defines a distribution over graphs.
We derive the exact joint probability over the graph and the node ordering of the sequential process.
We train graph generative models by maximizing this bound, without using the ad-hoc node orderings of previous methods.
arXiv Detail & Related papers (2021-06-11T06:37:52Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.