Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
- URL: http://arxiv.org/abs/2002.04809v1
- Date: Wed, 12 Feb 2020 05:38:42 GMT
- Title: Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
- Authors: Sejun Park, Jaeho Lee, Sangwoo Mo, Jinwoo Shin
- Abstract summary: Magnitude-based pruning is one of the simplest methods for pruning neural networks.
We develop a simple pruning method, coined lookahead pruning, by extending the single layer optimization to a multi-layer optimization.
Our experimental results demonstrate that the proposed method consistently outperforms magnitude-based pruning on various networks.
- Score: 83.99191569112682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnitude-based pruning is one of the simplest methods for pruning neural
networks. Despite its simplicity, magnitude-based pruning and its variants
demonstrated remarkable performances for pruning modern architectures. Based on
the observation that magnitude-based pruning indeed minimizes the Frobenius
distortion of a linear operator corresponding to a single layer, we develop a
simple pruning method, coined lookahead pruning, by extending the single layer
optimization to a multi-layer optimization. Our experimental results
demonstrate that the proposed method consistently outperforms magnitude-based
pruning on various networks, including VGG and ResNet, particularly in the
high-sparsity regime. See https://github.com/alinlab/lookahead_pruning for
codes.
Related papers
- Network Pruning Spaces [12.692532576302426]
Network pruning techniques, including weight pruning and filter pruning, reveal that most state-of-the-art neural networks can be accelerated without a significant performance drop.
This work focuses on filter pruning which enables accelerated inference with any off-the-shelf deep learning library and hardware.
arXiv Detail & Related papers (2023-04-19T06:52:05Z) - Dynamic Structure Pruning for Compressing CNNs [13.73717878732162]
We introduce a novel structure pruning method, termed as dynamic structure pruning, to identify optimal pruning granularities for intra-channel pruning.
The experimental results show that dynamic structure pruning achieves state-of-the-art pruning performance and better realistic acceleration on a GPU compared with channel pruning.
arXiv Detail & Related papers (2023-03-17T02:38:53Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Data-Efficient Structured Pruning via Submodular Optimization [32.574190896543705]
We propose a data-efficient structured pruning method based on submodular optimization.
We show that this selection problem is a weakly submodular problem, thus it can be provably approximated using an efficient greedy algorithm.
Our method is one of the few in the literature that uses only a limited-number of training data and no labels.
arXiv Detail & Related papers (2022-03-09T18:40:29Z) - MLPruning: A Multilevel Structured Pruning Framework for
Transformer-based Models [78.45898846056303]
Pruning is an effective method to reduce the memory footprint and computational cost associated with large natural language processing models.
We develop a novel MultiLevel structured Pruning framework, which uses three different levels of structured pruning: head pruning, row pruning, and block-wise sparse pruning.
arXiv Detail & Related papers (2021-05-30T22:00:44Z) - Network Pruning via Resource Reallocation [75.85066435085595]
We propose a simple yet effective channel pruning technique, termed network Pruning via rEsource rEalLocation (PEEL)
PEEL first constructs a predefined backbone and then conducts resource reallocation on it to shift parameters from less informative layers to more important layers in one round.
Experimental results show that structures uncovered by PEEL exhibit competitive performance with state-of-the-art pruning algorithms under various pruning settings.
arXiv Detail & Related papers (2021-03-02T16:28:10Z) - Layer-adaptive sparsity for the Magnitude-based Pruning [88.37510230946478]
We propose a novel importance score for global pruning, coined layer-adaptive magnitude-based pruning (LAMP) score.
LAMP consistently outperforms popular existing schemes for layerwise sparsity selection.
arXiv Detail & Related papers (2020-10-15T09:14:02Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
We present joint multi-dimension pruning (abbreviated as JointPruning), an effective method of pruning a network on three crucial aspects: spatial, depth and channel simultaneously.
We show that our method is optimized collaboratively across the three dimensions in a single end-to-end training and it is more efficient than the previous exhaustive methods.
arXiv Detail & Related papers (2020-05-18T17:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.