A Combined Stochastic and Physical Framework for Modeling Indoor 5G
Millimeter Wave Propagation
- URL: http://arxiv.org/abs/2002.05162v2
- Date: Mon, 17 Feb 2020 11:12:59 GMT
- Title: A Combined Stochastic and Physical Framework for Modeling Indoor 5G
Millimeter Wave Propagation
- Authors: Georges Nassif, Catherine Gloaguen, and Philippe Martins
- Abstract summary: iGeoStat is a theoretical framework that combines indoor environment modeling with advanced physical propagation simulation.
It aims to statistically understand the influence of indoor environment parameters on mmWave propagation properties.
- Score: 0.39762912548964846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indoor coverage is a major challenge for 5G millimeter waves (mmWaves). In
this paper, we address this problem through a novel theoretical framework that
combines stochastic indoor environment modeling with advanced physical
propagation simulation. This approach is particularly adapted to investigate
indoor-to-indoor 5G mmWave propagation. Its system implementation, so-called
iGeoStat, generates parameterized typical environments that account for the
indoor spatial variations, then simulates radio propagation based on the
physical interaction between electromagnetic waves and material properties.
This framework is not dedicated to a particular environment, material,
frequency or use case and aims to statistically understand the influence of
indoor environment parameters on mmWave propagation properties, especially
coverage and path loss. Its implementation raises numerous computational
challenges that we solve by formulating an adapted link budget and designing
new memory optimization algorithms. The first simulation results for two major
5G applications are validated with measurement data and show the efficiency of
iGeoStat to simulate multiple diffusion in realistic environments, within a
reasonable amount of time and memory resources. Generated output maps confirm
that diffusion has a critical impact on indoor mmWave propagation and that
proper physical modeling is of the utmost importance to generate relevant
propagation models.
Related papers
- RadioDiff-$k^2$: Helmholtz Equation Informed Generative Diffusion Model for Multi-Path Aware Radio Map Construction [69.96295462931168]
We propose a physics-informed generative learning approach, termed RadioDiff-$bmk2$, for accurate and efficient multipath-aware radio map (RM) construction.
We establish a direct correspondence between EM singularities, which correspond to the critical spatial features influencing wireless propagation, and regions defined by negative wave numbers in the Helmholtz equation.
arXiv Detail & Related papers (2025-04-22T06:28:13Z) - High Resolution Seismic Waveform Generation using Denoising Diffusion [3.5046784866523932]
This study introduces a novel, efficient, and scalable generative model for high-frequency seismic waveform generation.
A spectrogram representation of seismic waveform data is reduced to a lower-dimensional submanifold via an autoencoder.
A state-of-the-art diffusion model is trained to generate this latent representation, conditioned on key input parameters.
arXiv Detail & Related papers (2024-10-25T07:01:48Z) - EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
We present a novel machine-learning (ML) approach (EM-GANSim) for real-time electromagnetic (EM) propagation.
In practice, it can compute the signal strength in a few milliseconds on any location in 3D indoor environments.
arXiv Detail & Related papers (2024-05-27T17:19:02Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Neural Acoustic Context Field: Rendering Realistic Room Impulse Response
With Neural Fields [61.07542274267568]
This letter proposes a novel Neural Acoustic Context Field approach, called NACF, to parameterize an audio scene.
Driven by the unique properties of RIR, we design a temporal correlation module and multi-scale energy decay criterion.
Experimental results show that NACF outperforms existing field-based methods by a notable margin.
arXiv Detail & Related papers (2023-09-27T19:50:50Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Reduced Order Probabilistic Emulation for Physics-Based Thermosphere
Models [0.0]
This work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics Circulation General Model (TIE-GCM)
We show that across the available data, TIE-GCM ROPE has similar error to previous linear approaches while improving storm-time modeling.
We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE-GCM ROPE can capture the position resulting from TIE-GCM density with 5 km bias.
arXiv Detail & Related papers (2022-11-08T17:36:37Z) - SeismicNet: Physics-informed neural networks for seismic wave modeling
in semi-infinite domain [11.641708412097659]
We present a novel physics-informed neural network (PINN) model for seismic wave modeling in semi-infinite domain without the nedd of labeled data.
In terms of computational efficiency, we consider a sequential training strategy via temporal domain decomposition to improve the scalability of the network and solution accuracy.
Various numerical experiments have been implemented to evaluate the performance of the proposed PINN model.
arXiv Detail & Related papers (2022-10-25T14:25:07Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Prediction of Ultrasonic Guided Wave Propagation in Solid-fluid and
their Interface under Uncertainty using Machine Learning [0.0]
We advance existing research by accounting for uncertainty in the material and geometric properties of a structure.
We develop an efficient algorithm that addresses the inherent complexity of solving the multiphysics problem under uncertainty.
The proposed approach provides an accurate prediction for the WpFSI problem in the presence of uncertainty.
arXiv Detail & Related papers (2021-03-30T01:05:14Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.