Explainable Deep Modeling of Tabular Data using TableGraphNet
- URL: http://arxiv.org/abs/2002.05205v1
- Date: Wed, 12 Feb 2020 20:02:10 GMT
- Title: Explainable Deep Modeling of Tabular Data using TableGraphNet
- Authors: Gabriel Terejanu, Jawad Chowdhury, Rezaur Rashid, Asif Chowdhury
- Abstract summary: We propose a new architecture that produces explainable predictions in the form of additive feature attributions.
We show that our explainable model attains the same level of performance as black box models.
- Score: 1.376408511310322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vast majority of research on explainability focuses on
post-explainability rather than explainable modeling. Namely, an explanation
model is derived to explain a complex black box model built with the sole
purpose of achieving the highest performance possible. In part, this trend
might be driven by the misconception that there is a trade-off between
explainability and accuracy. Furthermore, the consequential work on Shapely
values, grounded in game theory, has also contributed to a new wave of
post-explainability research on better approximations for various machine
learning models, including deep learning models. We propose a new architecture
that inherently produces explainable predictions in the form of additive
feature attributions. Our approach learns a graph representation for each
record in the dataset. Attribute centric features are then derived from the
graph and fed into a contribution deep set model to produce the final
predictions. We show that our explainable model attains the same level of
performance as black box models. Finally, we provide an augmented model
training approach that leverages the missingness property and yields high
levels of consistency (as required for the Shapely values) without loss of
accuracy.
Related papers
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - On the Foundations of Shortcut Learning [20.53986437152018]
We study how predictivity and availability interact to shape models' feature use.
We find that linear models are relatively unbiased, but introducing a single hidden layer with ReLU or Tanh units yields a bias.
arXiv Detail & Related papers (2023-10-24T22:54:05Z) - Globally Interpretable Graph Learning via Distribution Matching [12.885580925389352]
We aim to answer an important question that is not yet well studied: how to provide a global interpretation for the graph learning procedure?
We formulate this problem as globally interpretable graph learning, which targets on distilling high-level and human-intelligible patterns that dominate the learning procedure.
We propose a novel model fidelity metric, tailored for evaluating the fidelity of the resulting model trained on interpretations.
arXiv Detail & Related papers (2023-06-18T00:50:36Z) - Learning with Explanation Constraints [91.23736536228485]
We provide a learning theoretic framework to analyze how explanations can improve the learning of our models.
We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
arXiv Detail & Related papers (2023-03-25T15:06:47Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
Recent developments in explainable AI (XAI) allow researchers to explore the inner workings of deep neural networks (DNNs)
We explore interpretability of models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC)
Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models.
arXiv Detail & Related papers (2022-10-09T23:02:42Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - Model extraction from counterfactual explanations [68.8204255655161]
We show how an adversary can leverage the information provided by counterfactual explanations to build high-fidelity and high-accuracy model extraction attacks.
Our attack enables the adversary to build a faithful copy of a target model by accessing its counterfactual explanations.
arXiv Detail & Related papers (2020-09-03T19:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.