Pre-Training for Query Rewriting in A Spoken Language Understanding
System
- URL: http://arxiv.org/abs/2002.05607v1
- Date: Thu, 13 Feb 2020 16:31:50 GMT
- Title: Pre-Training for Query Rewriting in A Spoken Language Understanding
System
- Authors: Zheng Chen, Xing Fan, Yuan Ling, Lambert Mathias, Chenlei Guo
- Abstract summary: We first propose a neural-retrieval based approach for query rewriting.
Then, inspired by the wide success of pre-trained contextual language embeddings, we propose a language-modeling (LM) based approach.
- Score: 14.902583546933563
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Query rewriting (QR) is an increasingly important technique to reduce
customer friction caused by errors in a spoken language understanding pipeline,
where the errors originate from various sources such as speech recognition
errors, language understanding errors or entity resolution errors. In this
work, we first propose a neural-retrieval based approach for query rewriting.
Then, inspired by the wide success of pre-trained contextual language
embeddings, and also as a way to compensate for insufficient QR training data,
we propose a language-modeling (LM) based approach to pre-train query
embeddings on historical user conversation data with a voice assistant. In
addition, we propose to use the NLU hypotheses generated by the language
understanding system to augment the pre-training. Our experiments show
pre-training provides rich prior information and help the QR task achieve
strong performance. We also show joint pre-training with NLU hypotheses has
further benefit. Finally, after pre-training, we find a small set of rewrite
pairs is enough to fine-tune the QR model to outperform a strong baseline by
full training on all QR training data.
Related papers
- Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
Large language models (LLMs) have sparked debate over whether they genuinely generalize to unseen tasks or rely on memorizing vast amounts of pretraining data.
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the LLM output probabilities and the pretraining data frequency.
This study demonstrates that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - Generative error correction for code-switching speech recognition using
large language models [49.06203730433107]
Code-switching (CS) speech refers to the phenomenon of mixing two or more languages within the same sentence.
We propose to leverage large language models (LLMs) and lists of hypotheses generated by an ASR to address the CS problem.
arXiv Detail & Related papers (2023-10-17T14:49:48Z) - HyPoradise: An Open Baseline for Generative Speech Recognition with
Large Language Models [81.56455625624041]
We introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction.
The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses.
LLMs with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list.
arXiv Detail & Related papers (2023-09-27T14:44:10Z) - An Approach to Improve Robustness of NLP Systems against ASR Errors [39.57253455717825]
Speech-enabled systems typically first convert audio to text through an automatic speech recognition model and then feed the text to downstream natural language processing modules.
The errors of the ASR system can seriously downgrade the performance of the NLP modules.
Previous work has shown it is effective to employ data augmentation methods to solve this problem by injecting ASR noise during the training process.
arXiv Detail & Related papers (2021-03-25T05:15:43Z) - Conversational Query Rewriting with Self-supervised Learning [36.392717968127016]
Conversational Query Rewriting (CQR) aims to simplify the multi-turn dialogue modeling into a single-turn problem by explicitly rewriting the conversational query into a self-contained utterance.
Existing approaches rely on massive supervised training data, which is labor-intensive to annotate.
We propose to construct a large-scale CQR dataset automatically via self-supervised learning, which does not need human annotation.
arXiv Detail & Related papers (2021-02-09T08:57:53Z) - Pattern-aware Data Augmentation for Query Rewriting in Voice Assistant
Systems [10.332550622090718]
We propose an augmentation framework that learns patterns from existing training pairs and generates rewrite candidates from rewrite labels inversely to compensate for insufficient QR training data.
Our experimental results show its effectiveness compared with a fully trained QR baseline and demonstrate its potential application in boosting the QR performance on low-resource domains or locales.
arXiv Detail & Related papers (2020-12-21T16:36:32Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
We integrate information from a retrieval system with a pre-trained language model in a purely unsupervised way.
We report that augmenting pre-trained language models in this way dramatically improves performance and that the resulting system, despite being unsupervised, is competitive with a supervised machine reading baseline.
arXiv Detail & Related papers (2020-05-10T09:28:12Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
We propose a novel NLP task called ASR post-processing for readability (APR)
APR aims to transform the noisy ASR output into a readable text for humans and downstream tasks while maintaining the semantic meaning of the speaker.
We compare fine-tuned models based on several open-sourced and adapted pre-trained models with the traditional pipeline method.
arXiv Detail & Related papers (2020-04-09T09:26:42Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
We augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia.
For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner.
We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA)
arXiv Detail & Related papers (2020-02-10T18:40:59Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.