Steps Towards Value-Aligned Systems
- URL: http://arxiv.org/abs/2002.05672v2
- Date: Mon, 9 Nov 2020 21:27:12 GMT
- Title: Steps Towards Value-Aligned Systems
- Authors: Osonde A. Osoba, Benjamin Boudreaux, Douglas Yeung
- Abstract summary: Algorithmic (including AI/ML) decision-making artifacts are an established and growing part of our decision-making ecosystem.
Current literature is full of examples of how individual artifacts violate societal norms and expectations.
This discussion argues for a more structured systems-level approach for assessing value-alignment in sociotechnical systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithmic (including AI/ML) decision-making artifacts are an established
and growing part of our decision-making ecosystem. They are indispensable tools
for managing the flood of information needed to make effective decisions in a
complex world. The current literature is full of examples of how individual
artifacts violate societal norms and expectations (e.g. violations of fairness,
privacy, or safety norms). Against this backdrop, this discussion highlights an
under-emphasized perspective in the literature on assessing value misalignment
in AI-equipped sociotechnical systems. The research on value misalignment has a
strong focus on the behavior of individual tech artifacts. This discussion
argues for a more structured systems-level approach for assessing
value-alignment in sociotechnical systems. We rely primarily on the research on
fairness to make our arguments more concrete. And we use the opportunity to
highlight how adopting a system perspective improves our ability to explain and
address value misalignments better. Our discussion ends with an exploration of
priority questions that demand attention if we are to assure the value
alignment of whole systems, not just individual artifacts.
Related papers
- ValueCompass: A Framework of Fundamental Values for Human-AI Alignment [15.35489011078817]
We introduce Value, a framework of fundamental values, grounded in psychological theory and a systematic review.
We apply Value to measure the value alignment of humans and language models (LMs) across four real-world vignettes.
Our findings uncover risky misalignment between humans and LMs, such as LMs agreeing with values like "Choose Own Goals", which are largely disagreed by humans.
arXiv Detail & Related papers (2024-09-15T02:13:03Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - AI Alignment: A Comprehensive Survey [70.35693485015659]
AI alignment aims to make AI systems behave in line with human intentions and values.
We identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality.
We decompose current alignment research into two key components: forward alignment and backward alignment.
arXiv Detail & Related papers (2023-10-30T15:52:15Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - A New Perspective on Evaluation Methods for Explainable Artificial
Intelligence (XAI) [0.0]
We argue that it is best approached in a nuanced way that incorporates resource availability, domain characteristics, and considerations of risk.
This work aims to advance the field of Requirements Engineering for AI.
arXiv Detail & Related papers (2023-07-26T15:15:44Z) - Revisiting the Performance-Explainability Trade-Off in Explainable
Artificial Intelligence (XAI) [0.0]
We argue that it is best approached in a nuanced way that incorporates resource availability, domain characteristics, and considerations of risk.
This work aims to advance the field of Requirements Engineering for AI.
arXiv Detail & Related papers (2023-07-26T15:07:40Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
We develop a value-based assessment framework that visualizes closeness and tensions between values.
We give guidelines on how to operationalize them, while opening up the evaluation and deliberation process to a wide range of stakeholders.
arXiv Detail & Related papers (2022-05-09T19:28:32Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
Interpretable machine learning (IML) is an urgent topic of research.
This paper focuses on a local-based, neural-specific interpretation process applied to textual and time-series data.
arXiv Detail & Related papers (2021-04-13T09:39:33Z) - The Challenge of Value Alignment: from Fairer Algorithms to AI Safety [2.28438857884398]
This paper addresses the question of how to align AI systems with human values.
It situates it within a wider body of thought regarding technology and value.
arXiv Detail & Related papers (2021-01-15T11:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.