The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version
- URL: http://arxiv.org/abs/2002.05678v1
- Date: Thu, 13 Feb 2020 17:58:42 GMT
- Title: The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version
- Authors: Abram Magner and Mayank Baranwal and Alfred O. Hero III
- Abstract summary: Graph convolutional networks (GCNs) are a widely used method for graph representation learning.
We investigate the power of GCNs to distinguish between different random graph models on the basis of the embeddings of their sample graphs.
- Score: 27.544219236164764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) are a widely used method for graph
representation learning. We investigate the power of GCNs, as a function of
their number of layers, to distinguish between different random graph models on
the basis of the embeddings of their sample graphs. In particular, the graph
models that we consider arise from graphons, which are the most general
possible parameterizations of infinite exchangeable graph models and which are
the central objects of study in the theory of dense graph limits. We exhibit an
infinite class of graphons that are well-separated in terms of cut distance and
are indistinguishable by a GCN with nonlinear activation functions coming from
a certain broad class if its depth is at least logarithmic in the size of the
sample graph. These results theoretically match empirical observations of
several prior works. Finally, we show a converse result that for pairs of
graphons satisfying a degree profile separation property, a very simple GCN
architecture suffices for distinguishability. To prove our results, we exploit
a connection to random walks on graphs.
Related papers
- Graph Neural Networks with a Distribution of Parametrized Graphs [27.40566674759208]
We introduce latent variables to parameterize and generate multiple graphs.
We obtain the maximum likelihood estimate of the network parameters in an Expectation-Maximization framework.
arXiv Detail & Related papers (2023-10-25T06:38:24Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Graphon Pooling for Reducing Dimensionality of Signals and Convolutional
Operators on Graphs [131.53471236405628]
We present three methods that exploit the induced graphon representation of graphs and graph signals on partitions of [0, 1]2 in the graphon space.
We prove that those low dimensional representations constitute a convergent sequence of graphs and graph signals.
We observe that graphon pooling performs significantly better than other approaches proposed in the literature when dimensionality reduction ratios between layers are large.
arXiv Detail & Related papers (2022-12-15T22:11:34Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
We quantify the information overlap between graph topology, node features, and labels.
We show that graph concatenation is a simple but more flexible alternative to graph convolution.
arXiv Detail & Related papers (2022-07-18T16:39:33Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
We consider the problem of estimating the topology of multiple networks from nodal observations.
We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn.
arXiv Detail & Related papers (2022-02-11T15:20:44Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphon is a nonparametric model that generates graphs with arbitrary sizes and can be induced from graphs easily.
We propose a novel framework called textitgraphon autoencoder to build an interpretable and scalable graph generative model.
A linear graphon factorization model works as a decoder, leveraging the latent representations to reconstruct the induced graphons.
arXiv Detail & Related papers (2021-05-29T08:11:40Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.