Dialogue history integration into end-to-end signal-to-concept spoken
language understanding systems
- URL: http://arxiv.org/abs/2002.06012v1
- Date: Fri, 14 Feb 2020 13:09:11 GMT
- Title: Dialogue history integration into end-to-end signal-to-concept spoken
language understanding systems
- Authors: Natalia Tomashenko, Christian Raymond, Antoine Caubriere, Renato De
Mori, Yannick Esteve
- Abstract summary: This work investigates the embeddings for representing dialog history in spoken language understanding systems.
We proposed to integrate dialogue history into an end-to-end signal-to-concept SLU system.
Three types of h-vectors are proposed and experimentally evaluated in this paper.
- Score: 10.746852024552334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates the embeddings for representing dialog history in
spoken language understanding (SLU) systems. We focus on the scenario when the
semantic information is extracted directly from the speech signal by means of a
single end-to-end neural network model. We proposed to integrate dialogue
history into an end-to-end signal-to-concept SLU system. The dialog history is
represented in the form of dialog history embedding vectors (so-called
h-vectors) and is provided as an additional information to end-to-end SLU
models in order to improve the system performance. Three following types of
h-vectors are proposed and experimentally evaluated in this paper: (1)
supervised-all embeddings predicting bag-of-concepts expected in the answer of
the user from the last dialog system response; (2) supervised-freq embeddings
focusing on predicting only a selected set of semantic concept (corresponding
to the most frequent errors in our experiments); and (3) unsupervised
embeddings. Experiments on the MEDIA corpus for the semantic slot filling task
demonstrate that the proposed h-vectors improve the model performance.
Related papers
- Joint Modelling of Spoken Language Understanding Tasks with Integrated
Dialog History [30.20353302347147]
We propose a novel model architecture that learns dialog context to jointly predict the intent, dialog act, speaker role, and emotion for the spoken utterance.
Our experiments show that our joint model achieves similar results to task-specific classifiers.
arXiv Detail & Related papers (2023-05-01T16:26:18Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - SPACE-3: Unified Dialog Model Pre-training for Task-Oriented Dialog
Understanding and Generation [123.37377363355363]
SPACE-3 is a novel unified semi-supervised pre-trained conversation model learning from large-scale dialog corpora.
It can be effectively fine-tuned on a wide range of downstream dialog tasks.
Results show that SPACE-3 achieves state-of-the-art performance on eight downstream dialog benchmarks.
arXiv Detail & Related papers (2022-09-14T14:17:57Z) - SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for
Task-Oriented Dialog Understanding [68.94808536012371]
We propose a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora.
Our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks.
arXiv Detail & Related papers (2022-09-14T13:42:50Z) - Achieving Conversational Goals with Unsupervised Post-hoc Knowledge
Injection [37.15893335147598]
A limitation of current neural dialog models is that they tend to suffer from a lack of specificity and informativeness in generated responses.
We propose a post-hoc knowledge-injection technique where we first retrieve a diverse set of relevant knowledge snippets conditioned on both the dialog history and an initial response from an existing dialog model.
We construct multiple candidate responses, individually injecting each retrieved snippet into the initial response using a gradient-based decoding method, and then select the final response with an unsupervised ranking step.
arXiv Detail & Related papers (2022-03-22T00:42:27Z) - An Approach to Inference-Driven Dialogue Management within a Social
Chatbot [10.760026478889667]
Instead of framing conversation as a sequence of response generation tasks, we model conversation as a collaborative inference process.
Our pipeline accomplishes this modelling in three broad stages.
This approach lends itself to understanding latent semantics of user inputs, flexible initiative taking, and responses that are novel and coherent with the dialogue context.
arXiv Detail & Related papers (2021-10-31T19:01:07Z) - Language Model as an Annotator: Exploring DialoGPT for Dialogue
Summarization [29.887562761942114]
We show how DialoGPT, a pre-trained model for conversational response generation, can be developed as an unsupervised dialogue annotator.
We apply DialoGPT to label three types of features on two dialogue summarization datasets, SAMSum and AMI, and employ pre-trained and non pre-trained models as our summarizes.
arXiv Detail & Related papers (2021-05-26T13:50:13Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
Spoken language understanding requires a model to analyze input acoustic signal to understand its linguistic content and make predictions.
Various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text.
We propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules.
arXiv Detail & Related papers (2020-10-05T19:29:49Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.