Distributed Averaging Methods for Randomized Second Order Optimization
- URL: http://arxiv.org/abs/2002.06540v1
- Date: Sun, 16 Feb 2020 09:01:18 GMT
- Title: Distributed Averaging Methods for Randomized Second Order Optimization
- Authors: Burak Bartan, Mert Pilanci
- Abstract summary: We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
- Score: 54.51566432934556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider distributed optimization problems where forming the Hessian is
computationally challenging and communication is a significant bottleneck. We
develop unbiased parameter averaging methods for randomized second order
optimization that employ sampling and sketching of the Hessian. Existing works
do not take the bias of the estimators into consideration, which limits their
application to massively parallel computation. We provide closed-form formulas
for regularization parameters and step sizes that provably minimize the bias
for sketched Newton directions. We also extend the framework of second order
averaging methods to introduce an unbiased distributed optimization framework
for heterogeneous computing systems with varying worker resources.
Additionally, we demonstrate the implications of our theoretical findings via
large scale experiments performed on a serverless computing platform.
Related papers
- Implicit Diffusion: Efficient Optimization through Stochastic Sampling [46.049117719591635]
We present a new algorithm to optimize distributions defined implicitly by parameterized diffusions.
We introduce a general framework for first-order optimization of these processes, that performs jointly.
We apply it to training energy-based models and finetuning denoising diffusions.
arXiv Detail & Related papers (2024-02-08T08:00:11Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
We develop a non-parametric, data-driven, tractable approach for solving multistage optimization problems.
We show that the proposed method produces decision rules with near-optimal average performance.
arXiv Detail & Related papers (2023-03-11T23:19:32Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Distributed Sketching Methods for Privacy Preserving Regression [54.51566432934556]
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
We derive novel approximation guarantees for classical sketching methods and analyze the accuracy of parameter averaging for distributed sketches.
We illustrate the performance of distributed sketches in a serverless computing platform with large scale experiments.
arXiv Detail & Related papers (2020-02-16T08:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.