Text-based Question Answering from Information Retrieval and Deep Neural
Network Perspectives: A Survey
- URL: http://arxiv.org/abs/2002.06612v2
- Date: Wed, 27 May 2020 16:27:09 GMT
- Title: Text-based Question Answering from Information Retrieval and Deep Neural
Network Perspectives: A Survey
- Authors: Zahra Abbasiantaeb and Saeedeh Momtazi
- Abstract summary: Text-based Question Answering (QA) is a challenging task which aims at finding short concrete answers for users' questions.
Deep learning approaches, which are the main focus of this paper, provide a powerful technique to learn multiple layers of representations and interaction between questions and texts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-based Question Answering (QA) is a challenging task which aims at
finding short concrete answers for users' questions. This line of research has
been widely studied with information retrieval techniques and has received
increasing attention in recent years by considering deep neural network
approaches. Deep learning approaches, which are the main focus of this paper,
provide a powerful technique to learn multiple layers of representations and
interaction between questions and texts. In this paper, we provide a
comprehensive overview of different models proposed for the QA task, including
both traditional information retrieval perspective, and more recent deep neural
network perspective. We also introduce well-known datasets for the task and
present available results from the literature to have a comparison between
different techniques.
Related papers
- Rule-Extraction Methods From Feedforward Neural Networks: A Systematic
Literature Review [1.1510009152620668]
Rules offer a transparent and intuitive means of explaining neural networks.
The study specifically addresses feedforward networks with supervised learning and crisp rules.
Future work can extend to other network types, machine learning methods, and fuzzy rule extraction.
arXiv Detail & Related papers (2023-12-20T09:40:07Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
Deep learning has revolutionized natural language processing (NLP) by enabling the development of models that can learn complex representations of language data.
Deep learning models for NLP typically use large amounts of data to train deep neural networks, allowing them to learn the patterns and relationships in language data.
Applying deep learning to text summarization refers to the use of deep neural networks to perform text summarization tasks.
arXiv Detail & Related papers (2023-10-13T21:24:37Z) - Automated Audio Captioning: an Overview of Recent Progress and New
Challenges [56.98522404673527]
Automated audio captioning is a cross-modal translation task that aims to generate natural language descriptions for given audio clips.
We present a comprehensive review of the published contributions in automated audio captioning, from a variety of existing approaches to evaluation metrics and datasets.
arXiv Detail & Related papers (2022-05-12T08:36:35Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Deep Image Deblurring: A Survey [165.32391279761006]
Deblurring is a classic problem in low-level computer vision, which aims to recover a sharp image from a blurred input image.
Recent advances in deep learning have led to significant progress in solving this problem.
arXiv Detail & Related papers (2022-01-26T01:31:30Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
We propose a novel graph-guided retrieval method to model the relations among answers across conversation turns.
We also propose to incorporate the multi-round relevance feedback technique to explore the impact of the retrieval context on current question understanding.
arXiv Detail & Related papers (2021-04-17T04:39:41Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
We extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG)
First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network (KNN), which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information.
To handle the diversity and complexity of KG information, we propose a Contextualized Knowledge-aware Attentive Neural Network (CKANN), which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network (GCN) and comprehensively learns context-based and knowledge-based sentence representation via
arXiv Detail & Related papers (2021-04-12T05:52:20Z) - Catalyzing Clinical Diagnostic Pipelines Through Volumetric Medical
Image Segmentation Using Deep Neural Networks: Past, Present, & Future [0.0]
This paper will briefly overview some of the state-of-the-art (SoTA) neural network-based segmentation algorithms.
It will also demonstrate important clinical implications of effective deep learning-based solutions.
arXiv Detail & Related papers (2021-03-27T19:05:11Z) - Deep Image Retrieval: A Survey [21.209884703192735]
We focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure.
Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of category-based CBIR.
arXiv Detail & Related papers (2021-01-27T09:32:58Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
Video summarization technologies aim to create a concise and complete synopsis by selecting the most informative parts of the video content.
This work focuses on the recent advances in the area and provides a comprehensive survey of the existing deep-learning-based methods for generic video summarization.
arXiv Detail & Related papers (2021-01-15T11:41:29Z) - Multi-document Summarization via Deep Learning Techniques: A Survey [29.431160110691607]
We propose a novel taxonomy to summarize the design strategies of neural networks.
We highlight the differences between various objective functions that are rarely discussed in the existing literature.
arXiv Detail & Related papers (2020-11-10T00:35:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.