Bit Allocation for Multi-Task Collaborative Intelligence
- URL: http://arxiv.org/abs/2002.07048v1
- Date: Fri, 14 Feb 2020 02:02:39 GMT
- Title: Bit Allocation for Multi-Task Collaborative Intelligence
- Authors: Saeed Ranjbar Alvar and Ivan V. Baji\'c
- Abstract summary: Collaborative intelligence (CI) is a promising framework for deployment of Artificial Intelligence (AI)-based services on mobile devices.
We propose the first bit allocation method for multi-stream, multi-task CI.
- Score: 39.11380888887304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that collaborative intelligence (CI) is a promising
framework for deployment of Artificial Intelligence (AI)-based services on
mobile devices. In CI, a deep neural network is split between the mobile device
and the cloud. Deep features obtained at the mobile are compressed and
transferred to the cloud to complete the inference. So far, the methods in the
literature focused on transferring a single deep feature tensor from the mobile
to the cloud. Such methods are not applicable to some recent, high-performance
networks with multiple branches and skip connections. In this paper, we propose
the first bit allocation method for multi-stream, multi-task CI. We first
establish a model for the joint distortion of the multiple tasks as a function
of the bit rates assigned to different deep feature tensors. Then, using the
proposed model, we solve the rate-distortion optimization problem under a total
rate constraint to obtain the best rate allocation among the tensors to be
transferred. Experimental results illustrate the efficacy of the proposed
scheme compared to several alternative bit allocation methods.
Related papers
- Resource Management for Low-latency Cooperative Fine-tuning of Foundation Models at the Network Edge [35.40849522296486]
Large-scale foundation models (FoMos) can perform human-like intelligence.
FoMos need to be adapted to specialized downstream tasks through fine-tuning techniques.
We advocate multi-device cooperation within the device-edge cooperative fine-tuning paradigm.
arXiv Detail & Related papers (2024-07-13T12:47:14Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
We develop a tractable selection algorithm to efficiently identify the necessary feature combinations.
Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from simple and interpretable models to fully connected neural networks.
arXiv Detail & Related papers (2022-09-19T19:57:17Z) - Multi-Agent Collaborative Inference via DNN Decoupling: Intermediate
Feature Compression and Edge Learning [31.291738577705257]
We study the multi-agent collaborative inference scenario, where a single edge server coordinates the inference of multiple UEs.
To achieve this goal, we first design a lightweight autoencoder-based method to compress the large intermediate feature.
Then we define tasks according to the inference overhead of DNNs and formulate the problem as a Markov decision process.
arXiv Detail & Related papers (2022-05-24T07:29:33Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
Device-edge co-inference partitions a deep neural network between a resource-constrained mobile device and an edge server.
On-device model sparsity level and intermediate feature compression ratio have direct impacts on workload and communication overhead.
We propose a novel automated machine learning (AutoML) framework based on deep reinforcement learning (DRL)
arXiv Detail & Related papers (2021-08-30T06:36:30Z) - Multi-task Over-the-Air Federated Learning: A Non-Orthogonal
Transmission Approach [52.85647632037537]
We propose a multi-task over-theair federated learning (MOAFL) framework, where multiple learning tasks share edge devices for data collection and learning models under the coordination of a edge server (ES)
Both the convergence analysis and numerical results demonstrate that the MOAFL framework can significantly reduce the uplink bandwidth consumption of multiple tasks without causing substantial learning performance degradation.
arXiv Detail & Related papers (2021-06-27T13:09:32Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
We develop a novel collaborative knowledge transfer approach for efficiently training the all-at-once quantization network.
Specifically, we propose an adaptive selection strategy to choose a high-precision enquoteteacher for transferring knowledge to the low-precision student.
To effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network.
arXiv Detail & Related papers (2021-03-02T03:09:03Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Pareto-Optimal Bit Allocation for Collaborative Intelligence [39.11380888887304]
Collaborative intelligence (CI) has emerged as a promising framework for deployment of Artificial Intelligence (AI)-based services on mobile/edge devices.
In this paper, we study bit allocation for feature coding in multi-stream CI systems.
arXiv Detail & Related papers (2020-09-25T20:48:33Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.