Block-Approximated Exponential Random Graphs
- URL: http://arxiv.org/abs/2002.07076v2
- Date: Wed, 26 Aug 2020 13:42:09 GMT
- Title: Block-Approximated Exponential Random Graphs
- Authors: Florian Adriaens, Alexandru Mara, Jefrey Lijffijt, Tijl De Bie
- Abstract summary: An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
- Score: 77.4792558024487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important challenge in the field of exponential random graphs (ERGs) is
the fitting of non-trivial ERGs on large graphs. By utilizing fast matrix
block-approximation techniques, we propose an approximative framework to such
non-trivial ERGs that result in dyadic independence (i.e., edge independent)
distributions, while being able to meaningfully model both local information of
the graph (e.g., degrees) as well as global information (e.g., clustering
coefficient, assortativity, etc.) if desired. This allows one to efficiently
generate random networks with similar properties as an observed network, and
the models can be used for several downstream tasks such as link prediction.
Our methods are scalable to sparse graphs consisting of millions of nodes.
Empirical evaluation demonstrates competitiveness in terms of both speed and
accuracy with state-of-the-art methods -- which are typically based on
embedding the graph into some low-dimensional space -- for link prediction,
showcasing the potential of a more direct and interpretable probabalistic model
for this task.
Related papers
- Deep Generative Models for Subgraph Prediction [10.56335881963895]
This paper introduces subgraph queries as a new task for deep graph learning.
Subgraph queries jointly predict the components of a target subgraph based on evidence that is represented by an observed subgraph.
We utilize a probabilistic deep Graph Generative Model to answer subgraph queries.
arXiv Detail & Related papers (2024-08-07T19:24:02Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.