Federated Extra-Trees with Privacy Preserving
- URL: http://arxiv.org/abs/2002.07323v1
- Date: Tue, 18 Feb 2020 01:15:18 GMT
- Title: Federated Extra-Trees with Privacy Preserving
- Authors: Yang Liu, Mingxin Chen, Wenxi Zhang, Junbo Zhang, Yu Zheng
- Abstract summary: We propose a novel privacy-preserving machine learning model named Federated Extra-Trees.
A secure multi-institutional machine learning system was developed to provide superior performance.
- Score: 20.564530457026976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is commonly observed that the data are scattered everywhere and difficult
to be centralized. The data privacy and security also become a sensitive topic.
The laws and regulations such as the European Union's General Data Protection
Regulation (GDPR) are designed to protect the public's data privacy. However,
machine learning requires a large amount of data for better performance, and
the current circumstances put deploying real-life AI applications in an
extremely difficult situation. To tackle these challenges, in this paper we
propose a novel privacy-preserving federated machine learning model, named
Federated Extra-Trees, which applies local differential privacy in the
federated trees model. A secure multi-institutional machine learning system was
developed to provide superior performance by processing the modeling jointly on
different clients without exchanging any raw data. We have validated the
accuracy of our work by conducting extensive experiments on public datasets and
the efficiency and robustness were also verified by simulating the real-world
scenarios. Overall, we presented an extensible, scalable and practical solution
to handle the data island problem.
Related papers
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Data Collaboration Analysis Over Matrix Manifolds [0.0]
Privacy-Preserving Machine Learning (PPML) addresses this challenge by safeguarding sensitive information.
NRI-DC framework emerges as an innovative approach, potentially resolving the 'data island' issue among institutions.
This study establishes a rigorous theoretical foundation for these collaboration functions and introduces new formulations.
arXiv Detail & Related papers (2024-03-05T08:52:16Z) - Privacy-Enhancing Collaborative Information Sharing through Federated
Learning -- A Case of the Insurance Industry [1.8092553911119764]
The report demonstrates the benefits of harnessing the value of Federated Learning (FL) to learn a single model across multiple insurance industry datasets.
FL addresses two of the most pressing concerns: limited data volume and data variety, which are caused by privacy concerns.
During each round of FL, collaborators compute improvements on the model using their local private data, and these insights are combined to update a global model.
arXiv Detail & Related papers (2024-02-22T21:46:24Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - DBFed: Debiasing Federated Learning Framework based on
Domain-Independent [15.639705798326213]
We propose a debiasing federated learning framework based on domain-independent, which mitigates model bias by explicitly encoding sensitive attributes during client-side training.
This paper conducts experiments on three real datasets and uses five evaluation metrics of accuracy and fairness to quantify the effect of the model.
arXiv Detail & Related papers (2023-07-10T14:39:57Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
We present a novel, generalizable data protection method by generating transferable unlearnable examples.
To the best of our knowledge, this is the first solution that examines data privacy from the perspective of data distribution.
arXiv Detail & Related papers (2023-05-18T04:17:01Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Efficient Logistic Regression with Local Differential Privacy [0.0]
Internet of Things devices are expanding rapidly and generating huge amount of data.
There is an increasing need to explore data collected from these devices.
Collaborative learning provides a strategic solution for the Internet of Things settings but also raises public concern over data privacy.
arXiv Detail & Related papers (2022-02-05T22:44:03Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
Article is dedicated to surveying on the state-of-the-art privacy techniques, which can be employed in Federated learning.
Recent research has demonstrated that retaining data and on computation in FL is not enough for privacy-guarantee.
This is because ML model parameters exchanged between parties in an FL system, which can be exploited in some privacy attacks.
arXiv Detail & Related papers (2020-11-10T21:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.