Conditional Adversarial Camera Model Anonymization
- URL: http://arxiv.org/abs/2002.07798v3
- Date: Thu, 3 Dec 2020 13:42:36 GMT
- Title: Conditional Adversarial Camera Model Anonymization
- Authors: Jerone T. A. Andrews, Yidan Zhang, Lewis D. Griffin
- Abstract summary: The model of camera that was used to capture a particular photographic image (model attribution) is typically inferred from high-frequency model-specific artifacts.
We propose a conditional adversarial approach for learning such transformations.
- Score: 11.98237992824422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The model of camera that was used to capture a particular photographic image
(model attribution) is typically inferred from high-frequency model-specific
artifacts present within the image. Model anonymization is the process of
transforming these artifacts such that the apparent capture model is changed.
We propose a conditional adversarial approach for learning such
transformations. In contrast to previous works, we cast model anonymization as
the process of transforming both high and low spatial frequency information. We
augment the objective with the loss from a pre-trained dual-stream model
attribution classifier, which constrains the generative network to transform
the full range of artifacts. Quantitative comparisons demonstrate the efficacy
of our framework in a restrictive non-interactive black-box setting.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
We propose adapting pre-trained unconditional diffusion models to new conditions using the learned internal representations of the denoiser network.
We show that augmenting the Tiny ImageNet training set with synthetic images generated by our approach improves the classification accuracy of ResNet baselines by up to 8%.
arXiv Detail & Related papers (2023-06-02T20:09:57Z) - DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle
CT Reconstruction [42.028139152832466]
Limited-Angle Computed Tomography (LACT) is a non-destructive evaluation technique used in a variety of applications ranging from security to medicine.
We present DOLCE, a new deep model-based framework for LACT that uses a conditional diffusion model as an image prior.
arXiv Detail & Related papers (2022-11-22T15:30:38Z) - DiffGAR: Model-Agnostic Restoration from Generative Artifacts Using
Image-to-Image Diffusion Models [46.46919194633776]
This work aims to develop a plugin post-processing module for diverse generative models.
Unlike traditional degradation patterns, generative artifacts are non-linear and the transformation function is highly complex.
arXiv Detail & Related papers (2022-10-16T16:08:47Z) - Frequency Domain Model Augmentation for Adversarial Attack [91.36850162147678]
For black-box attacks, the gap between the substitute model and the victim model is usually large.
We propose a novel spectrum simulation attack to craft more transferable adversarial examples against both normally trained and defense models.
arXiv Detail & Related papers (2022-07-12T08:26:21Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.