Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle
- URL: http://arxiv.org/abs/2002.08127v2
- Date: Fri, 14 May 2021 05:50:42 GMT
- Title: Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle
- Authors: Xin-Yu Zhang, Kai Zhao, Taihong Xiao, Ming-Ming Cheng, and Ming-Hsuan
Yang
- Abstract summary: We propose a novel structured sparsification method for efficient network compression.
The proposed method automatically induces structured sparsity on the convolutional weights.
We also address the problem of inter-group communication with a learnable channel shuffle mechanism.
- Score: 117.95823660228537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in convolutional neural networks(CNNs) usually come with the
expense of excessive computational overhead and memory footprint. Network
compression aims to alleviate this issue by training compact models with
comparable performance. However, existing compression techniques either entail
dedicated expert design or compromise with a moderate performance drop. In this
paper, we propose a novel structured sparsification method for efficient
network compression. The proposed method automatically induces structured
sparsity on the convolutional weights, thereby facilitating the implementation
of the compressed model with the highly-optimized group convolution. We further
address the problem of inter-group communication with a learnable channel
shuffle mechanism. The proposed approach can be easily applied to compress many
network architectures with a negligible performance drop. Extensive
experimental results and analysis demonstrate that our approach gives a
competitive performance against the recent network compression counterparts
with a sound accuracy-complexity trade-off.
Related papers
- Accelerating Distributed Deep Learning using Lossless Homomorphic
Compression [17.654138014999326]
We introduce a novel compression algorithm that effectively merges worker-level compression with in-network aggregation.
We show up to a 6.33$times$ improvement in aggregation throughput and a 3.74$times$ increase in per-iteration training speed.
arXiv Detail & Related papers (2024-02-12T09:57:47Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
We propose an ultrafast automated model compression framework called SeerNet for flexible network deployment.
Our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost.
arXiv Detail & Related papers (2023-04-13T10:52:49Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
This paper introduces FITCompress, a novel method integrating layer-wise mixed-precision quantization and unstructured pruning.
Experiments on computer vision and natural language processing benchmarks demonstrate that our proposed approach achieves a superior compression-performance trade-off.
arXiv Detail & Related papers (2023-02-15T12:02:30Z) - Low-rank Tensor Decomposition for Compression of Convolutional Neural
Networks Using Funnel Regularization [1.8579693774597708]
We propose a model reduction method to compress the pre-trained networks using low-rank tensor decomposition.
A new regularization method, called funnel function, is proposed to suppress the unimportant factors during the compression.
For ResNet18 with ImageNet2012, our reduced model can reach more than twi times speed up in terms of GMAC with merely 0.7% Top-1 accuracy drop.
arXiv Detail & Related papers (2021-12-07T13:41:51Z) - Compressing Neural Networks: Towards Determining the Optimal Layer-wise
Decomposition [62.41259783906452]
We present a novel global compression framework for deep neural networks.
It automatically analyzes each layer to identify the optimal per-layer compression ratio.
Our results open up new avenues for future research into the global performance-size trade-offs of modern neural networks.
arXiv Detail & Related papers (2021-07-23T20:01:30Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) is a threshold-based sparsification scheme that enjoys similar threshold estimation quality to deep gradient compression (DGC)
Our evaluation shows SIDCo speeds up training by up to 41:7%, 7:6%, and 1:9% compared to the no-compression baseline, Topk, and DGC compressors, respectively.
arXiv Detail & Related papers (2021-01-26T13:06:00Z) - Neural Network Compression Via Sparse Optimization [23.184290795230897]
We propose a model compression framework based on the recent progress on sparse optimization.
We achieve up to 7.2 and 2.9 times FLOPs reduction with the same level of evaluation of accuracy on VGG16 for CIFAR10 and ResNet50 for ImageNet.
arXiv Detail & Related papers (2020-11-10T03:03:55Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
We introduce a simple algorithm that directly compresses the model differences between neighboring workers.
Inspired by the PowerSGD for centralized deep learning, this algorithm uses power steps to maximize the information transferred per bit.
arXiv Detail & Related papers (2020-08-04T09:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.