Variational Encoder-based Reliable Classification
- URL: http://arxiv.org/abs/2002.08289v2
- Date: Sat, 17 Oct 2020 13:51:37 GMT
- Title: Variational Encoder-based Reliable Classification
- Authors: Chitresh Bhushan, Zhaoyuan Yang, Nurali Virani, Naresh Iyer
- Abstract summary: We propose an Epistemic (EC) that can provide justification of its belief using support from the training dataset as well as quality of reconstruction.
Our approach is based on modified variational autoencoders that can identify a semantically meaningful low-dimensional space.
Our results demonstrate improved reliability of predictions and robust identification of samples with adversarial attacks.
- Score: 5.161531917413708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models provide statistically impressive results which might
be individually unreliable. To provide reliability, we propose an Epistemic
Classifier (EC) that can provide justification of its belief using support from
the training dataset as well as quality of reconstruction. Our approach is
based on modified variational auto-encoders that can identify a semantically
meaningful low-dimensional space where perceptually similar instances are close
in $\ell_2$-distance too. Our results demonstrate improved reliability of
predictions and robust identification of samples with adversarial attacks as
compared to baseline of softmax-based thresholding.
Related papers
- Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Decorrelative Network Architecture for Robust Electrocardiogram
Classification [4.808817930937323]
It is not possible to train networks that are accurate in all scenarios.
Deep learning methods sample the model parameter space to estimate uncertainty.
These parameters are often subject to the same vulnerabilities, which can be exploited by adversarial attacks.
We propose a novel ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse complementary features.
arXiv Detail & Related papers (2022-07-19T02:36:36Z) - Utilizing Class Separation Distance for the Evaluation of Corruption
Robustness of Machine Learning Classifiers [0.6882042556551611]
We propose a test data augmentation method that uses a robustness distance $epsilon$ derived from the datasets minimal class separation distance.
The resulting MSCR metric allows a dataset-specific comparison of different classifiers with respect to their corruption robustness.
Our results indicate that robustness training through simple data augmentation can already slightly improve accuracy.
arXiv Detail & Related papers (2022-06-27T15:56:16Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Transformer Uncertainty Estimation with Hierarchical Stochastic
Attention [8.95459272947319]
We propose a novel way to enable transformers to have the capability of uncertainty estimation.
This is achieved by learning a hierarchical self-attention that attends to values and a set of learnable centroids.
We empirically evaluate our model on two text classification tasks with both in-domain (ID) and out-of-domain (OOD) datasets.
arXiv Detail & Related papers (2021-12-27T16:43:31Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Adversarial Robustness of Supervised Sparse Coding [34.94566482399662]
We consider a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate.
We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear encoder.
We provide a robustness certificate for end-to-end classification.
arXiv Detail & Related papers (2020-10-22T22:05:21Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.